
Team # 210 – Page 1 

 

Team # 210 

Problem B 

Trebuchet: The Dynamics of a Medieval Siege Engine 

 

Abstract 

 Our task for this problem was to design a trebuchet that does maximum damage, given 

that its counterweight has a mass of 5,000 kilograms and is released from a height of 2 meters 

above the ground.  To that end, we first modeled the trebuchet as a uniform, frictionless beam, 

pinned at its fulcrum, with the counterweight (taken to be a point mass) on one end of the beam, 

and a sling of fixed length and negligible mass attached to the other end.  The projectile (located 

on the far end of the sling) was also taken to be a point mass.  We assumed that the beam could 

make a full revolution about the fulcrum with neither the counterweight nor the projectile 

touching the ground, and that the beam would not fail during operation.  Moreover, we 

interpreted maximizing the damage done by the projectile as maximizing its speed upon release, 

which we assumed to occur when the counterweight reached its lowest point for the first time.   

 Lagrangian mechanics was used to find the governing differential equations for this 

system, and an algorithm for solving said differential equations using first-order Taylor series 

approximations was developed and translated into C++ code.  Finally, the speed of the projectile 

upon release was calculated for all allowed dimensions of the trebuchet (for a chosen set of 

parameters), and the dimensions corresponding to the maximum observed speed were recorded.  

For a steel beam with square cross sections of side length 10 centimeters whose fulcrum was 

located 1.5 meters above the ground, and a 100-kilogram projectile, we found that the optimum 

lengths of the arm of the counterweight, the opposing arm, and the sling, were approximately 

0.51 meters, 0.91 meters, and 0.58 meters, respectively.  We conclude that, for the parameters we 

chose, the ratio of the length of the sling to that of the arm to which the sling is attached should 
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be about 2:3, that together these should be as long as possible, and that the lever arm of the 

counterweight should be shorter than the opposing arm.  To find out whether this works as a 

general rule-of-thumb would require further investigation. 

 The strengths of our approach include that it takes into account the beam’s size and 

shape.  It is also quite general, in the sense that it makes very few simplifications beyond the 

idealized model of the system and the approximate numerical methods used to solve for the 

motion of the system.  The weaknesses of this approach are that it fails to account for friction 

between the beam and the fulcrum, the mass of the sling, and the sling’s elasticity.  In addition, 

we have made no attempt here to determine whether or not the trebuchet we have designed will 

withstand operation conditions.  Nevertheless, as a first approximation, our approach appears to 

do very well.  An actual trebuchet would need to be built to check the predictions of our model. 
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Problem Definition 

 Consider the trebuchet represented in Figure 1.  It consists of a beam of mass 2m  which 

is pinned at the point O  (the origin of the xyz -coordinate system, and henceforth referred to as 

the fulcrum) at some distance 0h  above the ground.  On one side of the beam, at a distance 1r  

from the fulcrum, is a counterweight of mass 1m .  Attached to the other side of the beam, at a 

distance 2r  from the fulcrum, is a sling of length 3r .  Inside the sling is a projectile of mass 3m .  

The counterweight is to be released (presumably from rest) from a height h  above the ground, 

launching the projectile into the air.  We would like to find the lengths 1r , 2r , and 3r  which 

enable the projectile to do the most possible damage, given that 000,51 =m kg and 2=h m. 

 

Figure 1.  Diagram of simplified trebuchet, with parameters labeled. 
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 To simplify our analysis, we will treat the counterweight and the projectile as point 

masses, and the beam as a frictionless, slender rod whose mass is evenly distributed along its 

length.  We will also neglect the mass of the sling, and we’ll assume that its length remains 

constant.  Furthermore, we will suppose that the beam can make a full revolution about the 

fulcrum with neither the counterweight nor the projectile touching the ground.  Finally, we will 

assume that the beam will not fail during operation.   

 Now in order to do the most damage, the projectile must have as much energy as 

possible.  Since we are treating the projectile as a point mass (thereby ignoring any rotation it 

may acquire about its center of mass), we must maximize its translational speed at the point of 

release.  To be definite, we will take the point of release to be the point at which the 

counterweight reaches its lowest height above the ground for the first time.  In order to find 

numerical values for 1r , 2r , and 3r , we will eventually need to decide on a material for the beam 

and the shape of its cross section, as well as values for 0h  and 3m .  For now, however, we will 

treat all parameters as unknowns, both for mathematical convenience and so that the results of 

our analysis will be general.  We are now ready to proceed to an analysis of the trebuchet system. 

 

Analysis 

 Since the only external force on the trebuchet system (i.e., gravity) is conservative, it is 

only natural to use the Lagrangian formulation of mechanics to analyze it.  We choose as our 

generalized coordinates 1φ , the angle the arm of length 1r  makes with the positive y -axis, and 

2φ , the angle the sling makes with the negative y -axis, both measured clockwise (see Figure 1). 

 We begin by expressing the Cartesian coordinates of the counterweight, the center of 

mass of the beam, and the projectile (which is located at the end of the sling) in terms of the  
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generalized coordinates 1φ  and 2φ .  The position of the counterweight is given by ( )11, yx , where 

 
111 sinφrx =  (1)

 
111 cosφry =  (2) 

We will also need the first time derivatives of these coordinates, so we might as well calculate 

them right now: 

 
1111 cosφφ&& rx =  (3)

 
1111 sinφφ&& ry −=  (4)

Now the center of mass of the beam will be a distance r  from the fulcrum in the direction of the 

sling, where 

 

2

12 rr
r

−
=  

(5)

Thus, the position of the center of mass of the beam is given by ( )22 , yx , where 

 
12 sin φrx −=  (6)

 
12 cosφry −=  (7)

Taking the first time derivatives of (6) and (7), we find that 

 
112 cosφφ&& rx −=  (8)

 
112 sinφφ&& ry =  (9)

Finally, the position of the projectile (at the end of the sling) is given by ( )33 , yx , where 

 ( )23123 sinsin φφ rrx +−=  (10)

 ( )23123 coscos φφ rry +−=  (11)

Again, taking the first time derivatives of (10) and (11), we find that 

( )
2231123 coscos φφφφ &&& rrx +−=  (12)
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2231123 sinsin φφφφ &&& rry +=  (13)

 We must now calculate the total kinetic and potential energies of the system.  We begin 

with kinetic energy of the counterweight, which is purely translational because the counterweight 

is treated as a point mass: 

( ) 2

1

2

11

2

1

2

11

2

111
2

1

2

1

2

1
φ&&& rmyxmvmT =+==  

(14)

Now the beam is not a point mass, but rather a rigid body which is rotating about the z -axis as 

shown in Figure 1.  Its kinetic energy is therefore purely rotational, and is given by 

 2

12
2

1
φ&zzIT =  

(15)

where 
zzI  is the moment of inertia of the beam about the z -axis.  The moment of inertia of a 

slender rod of mass m  and length l  about an axis perpendicular to its length and passing 

through its center of mass is given by 

 

 

2

12

1
lmI zz =′  

(16)

(Resnick, 185).  By the Parallel-Axis Theorem, its moment of inertia about a parallel axis a 

distance r  from its center of mass is given by 

222

12

1
mrmmrII zzzz +=+′= l  

(17)

Substituting 2m  for m , ( )21 rr +  for l , and r  for r , we have the moment of inertia of our beam 

about the z -axis: 

( ) 2

2

2

212
12

1
rmrrmI zz ++=  

(18)
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Even though we have derived this equation for the beam’s moment of inertia, we will leave it as 

zzI  for now so that our results will generalize to other kinds of beams. 

 The kinetic energy of the point mass projectile (while it is still attached to the sling) is 

purely translational, and is therefore given by the following: 

( )2

3

2

33

2

333
2

1

2

1
yxmvmT && +==  

(19)

After substituting (12) and (13) and simplifying, this becomes 

( )[ ]2

2

2

3212132

2

1

2

233 cos2
2

1
φφφφφφ &&&& rrrrmT +−+=  

(20)

Here we have used the trigonometric identity that 

( )212121 cossinsincoscos φφφφφφ −=+  (21)

(Taylor, front cover).  The total kinetic energy of the system is simply the sum of the kinetic 

energies of the counterweight, beam, and projectile: 

 
321 TTTT ++=  (22)

 Now we turn our attention to (gravitational) potential energy, which we will measure 

with respect to the line 0=y  rather than ground level for convenience.  The potential energies of 

the counterweight, the center of mass of the beam, and the projectile are, respectively, 

 
111111 cosφgrmgymU ==  (23)

 
12222 cosφgrmgymU −==  (24)

( )23123333 coscos φφ rrgmgymU +−==  (25)

where we have used the results of (2), (7), and (11).  The total potential energy of the system, 

then, is the sum of these: 

 
321 UUUU ++=  (26)
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 We now have everything we need to write down the Lagrangian for the system: 

 UTL −=  (27)

Substituting (22) and (26)—and by extension, (14), (15), (20), (23), (24), and (25)—we have 

( )[ ]
( )2312312111

2

2

2

3212132

2

1

2

23

2

1

2

1

2

11

coscoscoscos

cos2
2

1

2

1

2

1

φφφφ

φφφφφφφφ

rrgmgrmgrm

rrrrmIrmL zz

+++−

+−+++= &&&&&&

 

 

(28)

The two Lagrangian equations, which determine the generalized coordinates as functions of time, 

are as follows: 

 

11 φφ &∂

∂
=

∂

∂ L

dt

dL
 

(29)

 

22 φφ &∂

∂
=

∂

∂ L

dt

dL
 

(30)

Focusing first on 1φ , we find that 

( ) ( ) 1232112121323

1

sinsin φφφφφ
φ

grmrmrmrrm
L

−−+−−=
∂

∂
&&  

(31)

and 

( ) ( )2123231

2

23

2

11

1

cos φφφφ
φ

−+++=
∂

∂
&&

&
rrmrmIrm

L
zz  

(32)

Taking the first time derivative of (32), and substituting the result along with (31) into (29), we 

obtain, after some simplification, the following: 

( ) ( ) ( ) ( )[ ]21

2

22123231

2

23

2

11123211 sincossin φφφφφφφφ −+−+++=−− &&&&& rrmrmIrmgrmrmrm zz      (33) 

Similarly, for 2φ , we find that 

( ) 2332121323

2

sinsin φφφφφ
φ

grmrrm
L

−−=
∂

∂
&&  

(34)

and 
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 ( ) 2

2

33211323

2

cos φφφφ
φ

&&
&

rmrrm
L

+−=
∂

∂
) 

 

(35)

Taking the time derivative of (35), substituting the result and (34) into (30), and simplifying, we 

find that 

( ) ( )[ ]21

2

12112232 sincossin φφφφφφφφ −−−+=− &&&&& rrg  (36)

Now (33) and (36) constitute a set of two coupled, nonlinear, second-order differential equations 

for 1φ  and 2φ .  If we could solve them analytically for ( )t1φ  and ( )t2φ , we could find the time at 

which πφ =1  (the point at which we have supposed that the projectile is released), write down 

the speed of the projectile at that time, and proceed to maximize it with respect to 1r , 2r , and 3r .  

Unfortunately, we cannot solve (33) and (36) analytically; however, we can solve them 

numerically. 

 

Numerical Analysis 

 Given 1m , 2m , 3m , 1r , 2r , 3r , ( )01φ , ( )02φ , ( )01φ& , and ( )02φ& , we can solve (33) and (36) 

numerically using a series of Taylor series approximations.  We have already been given that 

000,51 =m  kg.  Now if we assume that the beam is to be cut from material with uniform cross-

section of area A , the value of 2m  (the mass of the beam) will depend on the mass density ρ  of 

the material, the cross-sectional area A , and the lengths 1r  and 2r .  In particular, 

 ( )212 rrAm += ρ  (37)

To obtain a numerical value for 2m , we are forced to decide on a material for the beam and a 

shape for its cross section.  Let us suppose, therefore, that the beam is made of steel, whose mass 
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density is 850,7=ρ  kg/m
3
 (Gere, 991).  Furthermore, we will take the cross section to be a 

square of side length 10.0=s m (we will see shortly that this is consistent with our 

approximating the beam as a slender rod).  Hence, the cross-section area is given by 

 10.0(2 == sA m)
2
 (38)

We must now decide what we would like our projectile to be.  For simplicity, let’s make it a 

spherical rock of mass 1003 =m  kg.  Now ( )01φ  will depend on the height 0h  of the fulcrum 

above the ground and the height h  from which the counterweight is released.  In particular (refer 

to Figure 1), 

 

( ) 






 −
=

1

0
1 arccos0

r

hh
φ  

(39)

We have been given that 2=h m, so we just need to decide on a value for 0h .  Let’s say that 

5.10 =h m.  We are free to choose ( )02φ , so for convenience we will take it to be zero.  Likewise, 

since we assume that the system is released from rest, ( ) ( ) 000 21 == φφ && .  Next we must obtain 

from (33) and (36) expressions for ( )01φ&&  and ( )02φ&&  in terms of everything else.  After a lot of 

simplification, involving the well-known trigonometric identity ( ) ( )21

2

21

2 sincos1 φφφφ −=−− , 

we find that 

( ) ( ) ( ) ( ) ( )[ ]
( )21

22

23

2

11

2121

2

1221

2

2321223232111
1

sin

sincossincossinsin

φφ

φφφφφφφφφφφφ
φ

−++

−−−−−−+−−
=

rmIrm

rrgrmrmrmrmg

zz

&&
&&       (40) 

and 

( ) ( )[ ] 221121

2

1

3

2
2 sincossin φφφφφφφφ g

r

r
−−−−= &&&&&  

(41)

where we already know what 1φ&&  is from (40).   
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 Now we are ready to begin the iterative approximation process.  For every possible value 

of 1r , 2r , and 3r  (we’ll discuss what this means shortly), we start by using (40) and (41) to find 

( )01φ&&  and ( )02φ&&  (the initial values of 1φ&&  and 2φ&& ) based on ( )01φ , ( )02φ , ( )01φ& , and ( )02φ&  (the 

initial values of 1φ , 2φ , 1φ& , and 2φ&  given above).  We then approximate the next values of 1φ , 2φ

, 1φ& , and 2φ&  using first-order Taylor series as follows: 

( ) ( ) ( )dtttdtt 010101 φφφ &+≈+  (42)

( ) ( ) ( )dtttdtt 020202 φφφ &+≈+  (43)

( ) ( ) ( )dtttdtt 010101 φφφ &&&& +≈+  (44)

( ) ( ) ( )dtttdtt 020202 φφφ &&&& +≈+  (45)

Here dt  is a constant time increment which we can choose; let’s set it at 0.01 s.  We then 

calculate 1φ&&  and 2φ&&  again using (40) and (41) and repeat the process until 1φ  reaches π  to within 

some tolerance (0.05 radians, say).  At that point, we stop and calculate the speed of the 

projectile according to the following equation (refer to (19) and (20)): 

( ) 2

2

2

3212132

2

1

2

23 cos2 φφφφφφ &&&& rrrrv +−+=  
(46)

We then use whichever values of 1r , 2r , and 3r  result in the highest value of 3v . 

 We must now put bounds on 1r , 2r , and 3r .  From Figure 1, we see that the smallest 

possible value of 1r  for a given 0h  is 0hh − , and the largest value of 1r  for which the 

counterweight clears the ground is 0h .  We therefore have the following bounds on 1r : 

 
010 hrhh <<−  (47)

The bounds for 2r  and 3r  are only slightly more complicated.  By the same reasoning as for 1r ,  
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the sum 32 rr +  cannot exceed 0h .  If we allow for very small values of 2r , and suppose that the 

shortest sling length available is 0l  (a reasonable value might be 0.30 m), we have that 

 
030 hr <<l  (48)

and 

 
3020 rhr −<<  (49)

Of course, we can’t check all of the infinite values contained in (47), (48), and (49), so we’ll 

have to choose a length increment of dr .  Since we presumably don’t need to be accurate to a 

millimeter, we can let 01.0=dr m, or one centimeter. 

 One question remains unanswered, namely whether or not we can get accurate results by 

treating the beam as a slender rod.  For the parameters we have chosen, the shortest possible 

beam would occur when 50.001 =−= hhr m and 02 =r m.  The total length of the beam would 

then be 50 centimeters.  The side length on the cross section is 10 centimeters.  Thus, the ratio of 

the two is 5.  As a first approximation, this is good enough.  If additional accuracy is needed, we 

can always calculate the moment of inertia of the beam exactly and use that value everywhere 

the moment of inertia occurs (this is why we left everything in terms of the moment of inertia to 

begin with).   

 To summarize, we have created an algorithm for finding the values of 1r , 2r , and 3r  

which maximize the speed of the projectile at its release.  We just have to translate it into a 

computer program and let a computer do the rest.  Appendix A contains such a program written 

in the C++ programming language called “optimize_trebuchet.cpp.”  Note that it was written for 

the parameter values chosen above, but in such a way that the parameters can be varied with 

ease.  Thus, it can be used to optimize the projectile’s speed for any desired set of parameters.  

The results obtained with the chosen parameter values are discussed in what follows. 
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Results 

 For the values of the parameters discussed in the previous section, the optimum lengths 

were found to be as follows: 

 51.01 ≈r  m (50)

 91.02 ≈r  m (51)

 58.03 ≈r  m (52)

The corresponding speed of the projectile upon release was 

 48.173 ≈v  m/s (53)

See Figure 2 for corresponding plots of ( )t1φ  and ( )t2φ .  (These plots were generated using the R 

programming language with the data output by “graph_data.cpp.”  The code for 

“graph_data.cpp” can be found in Appendix B, the data itself can be found in Appendix C, and 

the script used to plot the data in R can be found in Appendix D.) 

 

 

           (a)            (b) 

Figure 2.  (a) Plot of 1φ  (radians) versus t  (seconds).  (b) Plot of 2φ  (radians) versus t  (seconds). 
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 Obviously, (50), (51), (52), and (53) are just approximations; our model for the trebuchet 

was an idealization from the start, and the method we used to calculate its motion as a function 

of time was only approximate.  Having said that, the speed given in (53) seems reasonable 

enough; it is neither astronomically small nor astronomically large.  The same is true of the three 

lengths.  We can see that 1r  came out as close to the minimum value as our length increment 

allowed it to be.  Likewise, the total length 32 rr +  of the sling and the opposing arm was as close 

as possible to the maximum allowable length, with 3r  approximately two-thirds of 2r .  This 

seems to indicate that for optimal results, 2r  and 3r  should together be as long as possible, with 

the ratio of 3r  to 2r  about 2:3.  In addition, it appears that 1r  should be smaller than 2r .  

However, we should not be quick to make a generalization based on one simulation.  Ideally, we 

would run multiple simulations with different values for the parameters, and we would check the 

results of said simulations by actually building the corresponding trebuchets and testing them 

under realistic conditions.  At that point we might be able to arrive at a general rule-of-thumb for 

how to design the “best” trebuchet.  Until then, we can get a rough idea by running the program 

in Appendix A with any given parameters. 

 

Conclusion 

 Our task was to design a trebuchet which dealt the most damage when a 5,000-kilogram 

counterweight was released from a height of 2 meters above the ground.  After modeling the 

trebuchet and creating a recursive algorithm for approximating its motion as a function of time, 

we found (for the parameters we chose) that the ratio of the length of the sling to that of the arm 

to which the sling is attached should be about 2:3, that together these should be as long as 

possible, and that the lever arm of the counterweight should be less than the opposing arm.  We 
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cannot conclude that this result would work as a rule-of-thumb; however, for any given set of 

parameters, we can use the program in Appendix A to obtain a first approximation to the best 

trebuchet possible. 
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Appendix A: Code for “optimize_trebuchet.cpp” 

  /* optimize_trebuchet.cpp 

    This program was written by Team 210 to help solve Problem B of 

the 2010 University Physics Competition.  */ 

   

  // Declare libraries. 

  #include<cmath> 

  #include<cstdlib> 

  #include<iostream> 

  #include<fstream> 

  #include<string> 

 

  // Declare the namespace. 

  using namespace std; 

 

  // The main program. 

  int main() 

  { 

      // Define physical constants. 

      const double PI = acos(-1);   // Pi. 

      const double g = 9.8; // The acceleration due to gravity, m/s/s. 

       

      // Declare/define the masses of the system. 

      double m1 = 5000;   // The mass of the counterweight in kg. 

      double m2;          // The mass of the beam in kg. 

      double m3 = 100;    // The mass of the projectile in kg. 

       

      // Define the heights of the system. 

      double h = 2;   // The initial height of the counterweight in m. 

      double h0 = 1.5;    // The height of the fulcrum in m. 

       

      // Declare the lengths of the system. 

      double r1;          // The length of the "short" arm in m. 

      double r2;          // The length of the "long" arm in m. 

      double r3;          // The length of the sling in m. 

       

      // Declare the parameters that depend on the lengths. 

      double r;           // = (r2-r1)/2; 

      double Izz;         // = m2*pow((r1+r2),2)/12+m2*pow(r,2); 

       

      // Define tolerance for phi1 (see below). 

      double tol = 0.05; 

       

      // Define the maximum time and the time increment. 

      double tmax = 10;         // The maximum time in s. 

      double dt = tmax/1000;    // The time increment in s. 

      double T = 0; 

       

      // Define the dimension of future vectors. 

      int dim = (int)(tmax/dt+1); 
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      int n; 

       

      // Declare and define the time vector. 

      double t[dim]; 

      t[0] = 0; 

      for(int k=1; k<dim; k++) 

      { 

         t[k]=t[k-1]+dt; 

      } 

       

      // Declare the generalized coordinates and time derivatives. 

      double phi1[dim];    // phi1 

      double phi2[dim];    // phi2 

      double phi1d[dim];   // first time derivative of phi1 

      double phi2d[dim];   // first time derivative of phi2 

      double phi1dd[dim];  // second time derivative of phi1 

      double phi2dd[dim];  // second time derivative of phi2 

       

      /* For all possible values of r1, r2, and r3, compute maximum 

speed of m3 when phi1 = PI. */ 

       

      // Declare variables that will keep track of maximum speed. 

      double v3=0;             // The current speed.  

      double v3max=0;          // The maximum speed observed. 

      double r1max=0;        // The value of r1 corresponding to vmax. 

      double r2max=0;        // The value of r2 corresponding to vmax. 

      double r3max=0;        // The value of r3 corresponding to vmax. 

       

      // Define the length increment. 

      double dr = 0.01;   // The length increment in m. 

       

      for(r1=h-h0+dr;r1<h0;r1+=dr)   // h-h0 < r1 < h0 

      { 

         for(r3=0.30;r3<h0;r3+=dr)   // 0.30 < r3 < h0 

         { 

            for(r2=dr;r2<h0-r3;r2+=dr)   // 0 < r2 < h0-r3 

            { 

               // Determine the mass of the beam. 

               m2 = (7850)*pow(0.10,2)*(r1+r2); 

                

               // Determine the parameters that depend on the lengths. 

               r = (r2-r1)/2; 

               Izz = m2*pow((r1+r2),2)/12+m2*pow(r,2); // Slender rod. 

             

               // Determine the initial value of phi1. 

               phi1[0] = acos((h-h0)/r1); 

             

               // Define the initial value of phi2. 

               phi2[0] = 0; 

             

               // Define the initial values of phi1d and phi2d. 

               phi1d[0] = 0; 
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               phi2d[0] = 0; 

             

               // Determine the initial values of phi1dd and phi2dd. 

               phi1dd[0] = ( g*sin(phi1[0])*(m1*r1-m2*r-m3*r2) + 

m3*r2*( g*sin(phi2[0])*cos(phi1[0]-phi2[0]) - 

r3*pow(phi2d[0],2)*sin(phi1[0]-phi2[0]) - 

r2*pow(phi1d[0],2)*cos(phi1[0]-phi2[0])*sin(phi1[0]-phi2[0]) ) ) / ( 

m1*pow(r1,2) + m3*pow(r2,2)*pow(sin(phi1[0]-phi2[0]),2) + Izz ); 

 

               phi2dd[0] = ( r2*( pow(phi1d[0],2)*sin(phi1[0]-phi2[0]) 

- phi1dd[0]*cos(phi1[0]-phi2[0]) ) - g*sin(phi2[0]) ) / r3; 

             

               n = 0; 

             

               // Find subsequent values of coordinates/derivatives. 

               for(int k=1; k<dim; k++) 

               { 

                  // Approximate with first-order Taylor Series. 

                  phi1[k] = phi1[k-1] + phi1d[k-1]*dt; 

                  phi2[k] = phi2[k-1] + phi2d[k-1]*dt; 

                  phi1d[k] = phi1d[k-1] + phi1dd[k-1]*dt; 

                  phi2d[k] = phi2d[k-1] + phi2dd[k-1]*dt; 

                

                  // If phi1 has reached PI within tolerance, break. 

                  if(abs(PI-phi1[k])<tol) 

                  { 

                      n = k;  // Store index for future use. 

                      break; 

                  } 

                

                  // Calculate phi1dd and phi2dd based on above. 

                  phi1dd[k] = ( g*sin(phi1[k])*(m1*r1-m2*r-m3*r2) + 

m3*r2*( g*sin(phi2[k])*cos(phi1[k]-phi2[k]) - 

r3*pow(phi2d[k],2)*sin(phi1[k]-phi2[k]) - 

r2*pow(phi1d[k],2)*cos(phi1[k]-phi2[k])*sin(phi1[k]-phi2[k]) ) ) / ( 

m1*pow(r1,2) + m3*pow(r2,2)*pow(sin(phi1[k]-phi2[k]),2) + Izz ); 

 

                  phi2dd[k] = ( r2*( pow(phi1d[k],2)*sin(phi1[k]-

phi2[k]) - phi1dd[k]*cos(phi1[k]-phi2[k]) ) - g*sin(phi2[k]) ) / r3; 

               } 

             

               // Calculate the current speed of m3. 

               v3 = sqrt( pow(r2*phi1d[n],2) + pow(r3*phi2d[n],2) + 

2*r2*r3*phi1d[n]*phi2d[n]*cos(phi1[n]-phi2[n]) ); 

             

               // If this speed is greater than the maximum speed 

observed thus far, replace the maximum speed observed with this speed. 

               if(v3>v3max) 

               { 

                  v3max = v3; 

                  r1max = r1; 

                  r2max = r2; 
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                  r3max = r3; 

                  T = t[n]; 

               } 

            } 

         } 

      } 

       

      // Display the maximum speed and the corresponding r1, r2, r3. 

      cout << endl << "  vmax = " << v3max << endl << "  r1 = " << 

r1max << endl << "  r2 = " << r2max << endl << "  r3 = " << r3max << 

endl << "  tmax = " << T; 

       

      cin.get(); 

  } 
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Appendix B: Code for “graph_data.cpp” 

  /* graph_data.cpp 

   

  This program was written by Team 210 to help solve Problem B of the 

2010 University Physics Competition.  */ 

   

  // Declare libraries. 

  #include<cmath> 

  #include<cstdlib> 

  #include<iostream> 

  #include<fstream> 

  #include<string> 

 

  // Declare the namespace. 

  using namespace std; 

 

  // The main program. 

  int main() 

  { 

      // Define physical constants. 

      const double PI = acos(-1);   // Pi. 

      const double g = 9.8; // The acceleration due to gravity, m/s/s. 

       

      // Declare/define the masses of the system. 

      double m1 = 5000;   // The mass of the counterweight in kg. 

      double m2;          // The mass of the beam in kg. 

      double m3 = 100;    // The mass of the projectile in kg. 

       

      // Define the heights of the system. 

      double h = 2;   // The initial height of the counterweight in m. 

      double h0 = 1.5;    // The height of the fulcrum in m. 

       

      // Declare the lengths of the system. 

      double r1 = 0.51;         // The length of the "short" arm in m. 

      double r2 = 0.91;          // The length of the "long" arm in m. 

      double r3 = 0.58;          // The length of the sling in m. 

       

      // Declare the parameters that depend on the lengths. 

      double r = (r2-r1)/2; 

      double Izz = m2*pow((r1+r2),2)/12+m2*pow(r,2); 

       

      // Define the maximum time and the time increment. 

      double tmax = 10;         // The maximum time in s. 

      double dt = tmax/1000;    // The time increment in s. 
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      // Define the dimension of future vectors. 

      int dim = (int)(tmax/dt+1); 

       

      // Declare and define the time vector. 

      double t[dim]; 

      t[0] = 0; 

      for(int k=1; k<dim; k++) 

      { 

         t[k]=t[k-1]+dt; 

      } 

       

      // Declare the generalized coordinates and time derivatives. 

      double phi1[dim];    // phi1 

      double phi2[dim];    // phi2 

      double phi1d[dim];   // first time derivative of phi1 

      double phi2d[dim];   // first time derivative of phi2 

      double phi1dd[dim];  // second time derivative of phi1 

      double phi2dd[dim];  // second time derivative of phi2 

       

      // Determine the mass of the beam. 

      m2 = (7850)*pow(0.10,2)*(r1+r2); 

                

      // Determine the initial value of phi1. 

      phi1[0] = acos((h-h0)/r1); 

             

      // Define the initial value of phi2. 

      phi2[0] = 0; 

             

      // Define the initial values of phi1d and phi2d. 

      phi1d[0] = 0; 

      phi2d[0] = 0; 

             

      // Determine the initial values of phi1dd and phi2dd. 

      phi1dd[0] = ( g*sin(phi1[0])*(m1*r1-m2*r-m3*r2) + m3*r2*( 

g*sin(phi2[0])*cos(phi1[0]-phi2[0]) - r3*pow(phi2d[0],2)*sin(phi1[0]-

phi2[0]) - r2*pow(phi1d[0],2)*cos(phi1[0]-phi2[0])*sin(phi1[0]-

phi2[0]) ) ) / ( m1*pow(r1,2) + m3*pow(r2,2)*pow(sin(phi1[0]-

phi2[0]),2) + Izz ); 

 

      phi2dd[0] = ( r2*( pow(phi1d[0],2)*sin(phi1[0]-phi2[0]) - 

phi1dd[0]*cos(phi1[0]-phi2[0]) ) - g*sin(phi2[0]) ) / r3; 

             

      // Determine subsequent values of coordinates/derivatives. 

      for(int k=1; k<dim; k++) 
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      { 

         // Approximate with first-order Taylor Series. 

         phi1[k] = phi1[k-1] + phi1d[k-1]*dt; 

         phi2[k] = phi2[k-1] + phi2d[k-1]*dt; 

         phi1d[k] = phi1d[k-1] + phi1dd[k-1]*dt; 

         phi2d[k] = phi2d[k-1] + phi2dd[k-1]*dt; 

                

         // Calculate phi1dd and phi2dd based on above values. 

         phi1dd[k] = ( g*sin(phi1[k])*(m1*r1-m2*r-m3*r2) + m3*r2*( 

g*sin(phi2[k])*cos(phi1[k]-phi2[k]) - r3*pow(phi2d[k],2)*sin(phi1[k]-

phi2[k]) - r2*pow(phi1d[k],2)*cos(phi1[k]-phi2[k])*sin(phi1[k]-

phi2[k]) ) ) / ( m1*pow(r1,2) + m3*pow(r2,2)*pow(sin(phi1[k]-

phi2[k]),2) + Izz ); 

 

         phi2dd[k] = ( r2*( pow(phi1d[k],2)*sin(phi1[k]-phi2[k]) - 

phi1dd[k]*cos(phi1[k]-phi2[k]) ) - g*sin(phi2[k]) ) / r3; 

      } 

             

      // Output the values of t, phi1, and phi2 to a text file. 

      ofstream file1; 

      file1.open("data.txt"); 

       

      file1 << "t phi1 phi2" << endl; 

       

      for(int k=0; k<=dim; k++) 

      { 

         file1 << t[k] << " " << phi1[k] << " " << phi2[k] << endl; 

      } 

  } 
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Appendix C: Data Generated by “graph_data.cpp” 

t   phi1    phi2 

0   0.198355   0 

0.01   0.198355   0 

0.02   0.198715   -0.000555201 

0.03   0.199437   -0.00166556 

0.04   0.200521   -0.00333081 

0.05   0.201967   -0.0055505 

0.06   0.203777   -0.00832393 

0.07   0.205955   -0.0116502 

0.08   0.208502   -0.015528 

0.09   0.211423   -0.019956 

0.1   0.214721   -0.0249324 

0.11   0.218402   -0.030455 

0.12   0.22247   -0.0365214 

0.13   0.226932   -0.0431286 

0.14   0.231794   -0.0502731 

0.15   0.237064   -0.0579511 

0.16   0.242749   -0.0661579 

0.17   0.248858   -0.0748883 

0.18   0.2554   -0.0841362 

0.19   0.262384   -0.0938947 

0.2   0.269821   -0.104156 

0.21   0.277723   -0.114911 

0.22   0.2861   -0.126149 

0.23   0.294965   -0.137858 

0.24   0.304331   -0.150026 

0.25   0.314212   -0.162638 

0.26   0.324623   -0.175676 

0.27   0.335577   -0.189121 

0.28   0.347092   -0.202951 

0.29   0.359184   -0.217143 

0.3   0.371869   -0.231669 

0.31   0.385167   -0.246498 

0.32   0.399096   -0.261598 

0.33   0.413675   -0.276929 

0.34   0.428926   -0.292449 

0.35   0.444868   -0.308113 

0.36   0.461525   -0.323867 

0.37   0.47892   -0.339656 

0.38   0.497075   -0.355416 

0.39   0.516017   -0.371078 

0.4   0.53577   -0.386566 

0.41   0.556362   -0.401798 

0.42   0.57782   -0.416684 

0.43   0.600174   -0.431125 

0.44   0.623451   -0.445016 

0.45   0.647685   -0.458241 

0.46   0.672906   -0.470677 

0.47   0.699148   -0.482192 
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0.48   0.726444   -0.492643 

0.49   0.754829   -0.501877 

0.5   0.78434   -0.509734 

0.51   0.815013   -0.516043 

0.52   0.846886   -0.52062 

0.53   0.879998   -0.523278 

0.54   0.914386   -0.523814 

0.55   0.950089   -0.522021 

0.56   0.987148   -0.517681 

0.57   1.0256   -0.51057 

0.58   1.06548   -0.500456 

0.59   1.10683   -0.487101 

0.6   1.14968   -0.470265 

0.61   1.19407   -0.449702 

0.62   1.24003   -0.425165 

0.63   1.28758   -0.396406 

0.64   1.33675   -0.363179 

0.65   1.38755   -0.325241 

0.66   1.44001   -0.282354 

0.67   1.49411   -0.234286 

0.68   1.54988   -0.180815 

0.69   1.60729   -0.121727 

0.7   1.66633   -0.0568223 

0.71   1.72697   0.0140842 

0.72   1.78918   0.0911624 

0.73   1.8529   0.174564 

0.74   1.91808   0.26442 

0.75   1.98464   0.360842 

0.76   2.05248   0.463916 

0.77   2.12152   0.573703 

0.78   2.19163   0.690241 

0.79   2.26268   0.813538 

0.8   2.33455   0.943573 

0.81   2.40707   1.0803 

0.82   2.48009   1.22363 

0.83   2.55345   1.37347 

0.84   2.62698   1.52967 

0.85   2.70052   1.69204 

0.86   2.7739   1.86039 

0.87   2.847   2.03445 

0.88   2.91967   2.21393 

0.89   2.99182   2.39849 

0.9   3.06337   2.5877 

0.91   3.13428   2.78109 
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Appendix D: R Script for Plotting the Data Generated by “graph_data.cpp” 

$ graph.R 

graph_data = read.table("data.txt", header = TRUE) 

plot(phi1~t, data = graph_data) 

plot(phi2~t, data = graph_data) 
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