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Space Tower Launch Costs

Team Number 352

Problem A

Abstract

We determine the effects of changing launch altitude on the total cost of launching
a 10,000 kg payload on a traditional rocket into low-earth orbit from an from an
arbitrarily high tower. We address two aspects of this problem: vertical atmospheric
launch and space-based launch tangent to Earth’s surface. In the former case, we
simulate the atmospheric flight of a representative two-stage medium-launch rocket
based on SpaceX’s Falcon 9 on the way to a circular orbit with an altitude of 300 km,
and we compute the savings in ∆v as a function of launch height. In the latter case,
we compute the requisite fuel mass to take the 10,000 kg payload from the tower to a
Hohmann transfer orbit terminating in a circular orbit at an altitude of 300 km. In both
cases, we also compute the cost of lifting the space vehicle to various launch heights.
We conclude that because the space-based launcher, with a tower height between 100
and 300 km, has a mass and ∆v much lower than the atmospheric rocket, its elevation
costs and ∆v savings add up to a monetary cost considerably less than the atmospheric
launcher. Assuming total mission cost is proportional to the mass of the launcher and
elevation costs are negligible, at a payload launch cost of $15,000/kg we estimate that
the cost of launching a rocket from a tower above 100 km is only about $19 million, or
about $1,900 per kilogram of payload.
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1 Interpretation of Problem A

Our goal is to determine the total cost of sending a 10,000 kg payload on a traditional
rocket into a low-Earth orbit (LEO) by launching from towers of differing heights. To
compare these costs, we must design the launch the rocket will take to achieve its final orbit
and calculate the amount of fuel required to carry out such a procedure as a function of
launch height. We must then estimate total cost of launching the 10,000 kg payload into
a given low Earth orbit as a function of launch height. We will use the reference cost of
($15, 000/kg) × (10, 000 kg) = $1.5 × 108 to send a 10,000 kg payload into LEO.

2 Assumptions

First, we take our target LEO to be a circular orbit 300 km above Earth’s surface [5].
The construction of actual rockets is complex and beyond the scope of this analysis, so we

chose to base our model on SpaceX’s Falcon 9 (described in [2]), a representative two-stage
medium-lift rocket capable of transporting the requisite 10,000 kg payload to LEO. We name
our fictitious spacecraft Falcon 9 Surrogate.

See Table 1 for the characteristics we chose for Falcon 9 Surrogate. The table includes
the frontal cross-sectional area Af , the drag coefficient CD, the mass of the payload mp from

the problem statement, the mass of stage 1 of the rocket when empty m
(1)
e and when full of

fuel m
(1)
f , and the mass of stage 2 of the rocket when empty m

(2)
e and when full of fuel m

(2)
f .

We also assume the World Geodetic System WGS84 values in [7] for such constants as
Earth’s radius, RE = 6378 km, the Earth’s angular velocity, ΩE = 7.29 × 10−5 rad/s, and
the product of the gravitational constant and Earth’s mass, which we denote as µ = GM =
3.986 × 105 km3/s2. In addition we assume that atmospheric density around Earth at a

Figure 1: Photograph of the Falcon 9 during liftoff.
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Af (m2) CD mp m
(1)
e m

(1)
f m

(2)
e m

(2)
f

π(2.3)2 0.3 10,000 kg 20,000 kg 342,859 kg 3000 kg 54,000 kg

Table 1: Specifications of our fictional spacecraft, the Falcon 9 Surrogate.

radius r from Earth’s center is approximately

ρ = ρ0 exp

(
r −RE

H

)
, (1)

where we use H = 8 km as the approximate scale height of Earth’s atmosphere (referring to
[7]) and ρ0 = 1.225 kg/m3 as the atmospheric density at sea level [1]. Furthermore, when
we consider the equations of motion for the Falcon 9 Surrogate during launch, we will only
consider the atmospheric drag effects when the rocket is below the Kàrmàn line at 100 km
above Earth’s surface [4]. This marks the end of the “sensible atmosphere” for our purposes,
because drag forces are negligible beyond this line. To work this assumption into our code
later on, we will alter our formula for ρ from the one in equation (1) to

ρ = ρ0 exp

(
r −RE

H

)
× Θ(h),

where Θ(h) is the step function

Θ(h) =

{
1 if h ≤ 100 km,

0 if h > 100 km.

3 Launch Mechanics

Since we launch the Falcon 9 Surrogate at the equator, we can restrict our attention to the
plane that contains the trajectory of the rocket. Working in two spatial dimensions, we
describe the location of the rocket using polar coordinates r, θ where r measures distance
from the center of Earth and θ is the azimuthal angle, increasing eastwardly. We will also use
the unit vectors r̂, θ̂ which point in the directions of increasing r, θ respectively. Throughout
our analysis of the rocket’s launch trajectory, we let v denote its speed.

3.1 External Forces

During its launch, several forces act on the Falcon 9 Surrogate. First, gravity pulls the rocket
towards the center of the Earth with ([3])

~Fg = − µm

r2
r̂. (2)

Here, m varies with time since the Falcon 9 Surrogate expels fuel during the launch, and is
given by

m(t) = m0 +

∫ t

0

ṁ dt, (3)
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where m0 is the total initial mass of the rocket including all its fuel and ṁ is the rate at
which this total mass changes. Note that ṁ is negative, since total mass decreases as fuel is
expelled.

In addition, at relatively low altitudes the Falcon 9 Surrogate experiences considerable
drag. The drag forces are proportional to square of the velocity of the rocket with respect
to the atmosphere. We assume the atmosphere rotates with the angular velocity of Earth,
ΩE, so we calculate the relative velocity of the rocket with respect to the atmosphere as

~vrel = vr r̂ + (vθ − rΩE) θ̂, (4)

where vr, vθ are the polar components of the velocity of the rocket. Then the drag force is
given by

~D = − 1

2
ρ(r)AfCDv

2
rel v̂rel, (5)

where v̂rel is the unit vector in the direction of ~vrel [3].
Furthermore, while the Falcon 9 Surrogate expels fuel, it creates a thrust force parallel to

the body of the rocket. Now, while the rocket travels through the atmosphere, its orientation
changes. We let α denote the angle between r̂ and a unit vector pointing along the body
of the rocket, letting α take a positive value if the rocket has rotated counterclockwise with
respect to r̂. Thus, the thrust force ~T is given by the so-called “rocket equation,”

~T = −veṁ(cosα r̂ + sinα θ̂), (6)

where ve is the velocity of the exhaust relative to the rocket [3]. From equation (6) we can
calculate the change in speed of a rocket when the only force it experiences is thrust. In that
case the total external force is ~T , so change in speed can be found by integrating mv̇ = T .
From the time fuel begins burning until the engine cuts off

∆v = ve ln

(
mi

mf

)
, (7)

where mi is the total mass of the rocket and fuel and mf is mi minus the mass of the fuel
burned.

Moreover, during the flight, if α is nonzero and if the Falcon 9 Surrogate is not pro-
grammed to keep α constant, then gravity will cause the spacecraft to rotate with ([3])

α̇ =
µ sinα

vr2
. (8)

This is know as a “gravity turn.”

3.2 Equations of Motion

We will consider several regimes of the launch trajectory. While the Falcon 9 Surrogate is
below the Kàrmàn line with fuel burning, we include the drag and thrust forces to obtain
the equation of motion,

m~̈r = ~Fg + ~D + ~T , (9)
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which gives

r̈ = − µm

r2
− 1

2
ρ(r)Af CD vrel vr − ve ṁ cosα,

rθ̈ = −1

2
ρ(r)Af CD vrel (vθ − ΩEr) − ve ṁ sinα.

If the spacecraft has exited the sensible atmosphere and continues to burn fuel, we dis-
regard ~D to obtain the equation

m~̈r = ~Fg + ~T , (10)

or

r̈ = − µm

r2
− ve ṁ cosα,

rθ̈ = −ve ṁ sinα.

Above the Kàrmàn line, once the rocket engines cut off, ~T vanishes and our equation of
motion reduces to

m~̈r = ~Fg. (11)

3.3 Free Fall

When its behavior is dictated by equation (11), our spacecraft is in free fall and will take
part in a closed elliptical orbit (since it will never reach escape velocity). In such an orbit,
we can write the energy of Falcon 9 Surrogate it two ways,

E =
mv2

2
− µm

r
= −µm

2a
,

where a is the semi-major axis of the ellipse [3]. This gives an equation for the spacecraft’s
speed,

v =

√
µ

(
2

r
− 1

a

)
. (12)

As the rocket orbits Earth, the center of Earth will coincide with one of the foci of the orbit
ellipse. When the spacecraft has a given energy E and angular momentum L, the eccentricity
of the orbit ellipse is given by

e =

√
1 +

2EL2

µ2m3
.

The apogee ra of the orbit is the distance from Earth’s center to the farthest point on the
orbit ellipse and is given by

ra = (1 + e) a, (13)

a function of E and L. When the Falcon 9 Surrogate reaches the apogee of its orbit, it’s
altitude is given by h = ra −RE.
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3.4 Hohmann Transfer

Later in the analysis, we will need a method to transfer Falcon 9 Surrogate from one circular
orbit to another with larger radius. We will use something similar to a “Hohmann transfer.”
In a Hohmann transfer an instantaneous boost is fired at one point of the initial circular orbit
with ∆v1 so that the rocket enters an elliptical orbit that will tangentially intersect the target
circular orbit after one half-period. At the point of intersection, a second instantaneous boost
is fired with ∆v2 such that the spacecraft enters desired orbit. According to [3], the ∆v’s
required for this are given by

∆v1 =

√
µ

ri

(√
2rf

ri + rf
− 1

)
, (14)

∆v2 =

√
µ

2f

(
1 −

√
2ri

ri + rf

)
, (15)

where ri and rf are the radii of the initial and final circular orbits of the rocket.

4 Launch Design

We consider two regimes of tower heights and design a distinct launch strategy for each of
them. First we consider towers that do not extend above the Kàrmàn line, and next we
consider the case of a tower that climbs outside the sensible atmosphere.

4.1 Launching from Below the Kàrmàn Line

We design the trajectory Falcon 9 Surrogate will take during each of its two fuel-burning
stages.

4.1.1 Stage 1

In Stage 1, we burn with ṁ ≈ 720 kg/s and ve ≈ 4020 m/s to achieve a thrust of magnitude
T ≈ 2890 kN.

We begin with a vertical liftoff for the first ten seconds of flight. During this period, the
motion of the rocket is dictated by equation (9) with α held at 0.

At t = 10 s, the spacecraft begins a programmed turn. Since the rocket is still below the
Kàrmàn line during this phase, the trajectory is determined again by equation (9), but here
α changes at the prescribed rate of α̇ = 0.5◦/s. This continues until α = 8.5◦.

At that point, we allow the Falcon 9 Surrogate to undergo a gravity turn during which
α̇ is given by equation (8). Before the rocket exits the sensible atmosphere, its motion is
dictated by equation (9); however, when r−RE exceeds 100 km, we must use equation (10)
to determine the spacecraft’s motion.
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4.1.2 Between Stages

The rocket continues to burn fuel above the Kàrmàn line until it attains an energy and an
angular momentum sufficient for an elliptical orbit with apogee equal to the target orbit
radius. That is, the engines cut off when E and L are such that ra in equation (13) exceeds
300 km. At this point the spacecraft free falls in an elliptical orbit, obeying equation (11).
When Falcon 9 Surrogate reaches the apogee of this orbit, we burn fuel once more, and Stage
2 begins.

4.1.3 Stage 2

In Stage 2, we burn with ṁ ≈ 24.3 kg/s and ve ≈ 4530 m/s to achieve a thrust of magnitude
T ≈ 110 kN. This thrust is directed along θ̂. To simplify calculations, we assume that
Stage 2 occurs as an impulsive burn, neglecting the duration of time during which it takes
place. At this step, enough fuel must be exhausted to impart to the rocket the ∆v required
to transfer from its elliptical orbit to the target circular orbit. We calculate the necessary
∆v from equation (12). When Falcon 9 Surrogate reaches the apogee of its elliptical orbit,
r = ra, so its speed is given by

vi =

√
µ

(
2

ra
− 1

a

)
. (16)

In order to transfer to a circular orbit of radius ra, the spacecraft should be moving with
speed

vf =

√
µ

(
2

ra
− 1

ra

)
=

√
µ

ra
. (17)

Subtracting equation (16) from (17) gives the requirement

∆v = vf − vi =

√
µ

ra
−

√
µ

(
2

ra
− 1

a

)
.

4.2 Launching from Above the Kàrmàn Line

When launching Falcon 9 Surrogate from an altitude h outside the sensible atmosphere, we
use a different technique to get the rocket into its target orbit. Since we no longer need to
consider drag at this stage, we choose a horizontal launch, with liftoff tangent to Earth’s
surface. Before liftoff, our spacecraft is traveling in a circular path around Earth’s center at
a speed (RE + h)ΩE. We will mimic a Hohmann transfer, first boosting with ∆v1 to enter
an elliptical orbit that will tangentially intersect the desired circular orbit at altitude 300
km after one half-period, and second boosting with ∆v2 when the intersections occurs to
enter the target orbit. To write down the equation for ∆v1 we must modify equation (14)
because the rocket must first accelerate to the correct speed for a circular orbit at the launch
altitude. Since ∆v1 must include this change in velocity, we modify equation (14) to get

∆v1 =

(√
µ

RE + h
− (RE + h) ΩE

)
+

√
µ

RE + h

(√
2rf

RE + h+ rf
− 1

)
,
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where rf = RE + 300 km is the radius of the target circular orbit. This simplifies to

∆v1 =

√
µ

RE + h

√
2rf

RE + h+ rf
− (RE + h) ΩE.

We take ∆v2 straight from equation (15) to get

∆v2 =

√
µ

rf

(
1 −

√
2(RE + h)

RE + h+ rf

)
.

5 Numerical Analysis

5.1 Simulation and Results

Figure 2: Launch trajectories of our Falcon 9 surrogate from various altitudes between 0 and 100 km viewed
from the south in a co-rotating frame. Each trajectory is plotted from launch until the first engine cutoff.
All trajectories lead to an apogee of 300 km.

We divide our analysis into two parts: We first model the flight of Falcon 9 Surrogate
at various starting altitudes below the Kàrmàn line, propagating its equations of motion
forward until the state vector is such that the rocket will have a ballistic trajectory with an
apogee at the target orbit’s altitude. Above the Kàrmàn line, the effects of atmospheric drag
are negligible; thus we modeled launches from above 100 km as impulsive maneuvers in the
tangential direction using an ideal rocket with a mass commensurate to the ∆v required to
enter a Hohmann transfer orbit with apogee at the target orbit.
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Figure 3: Launch trajectories of Falcon 9 Surrogate from various altitudes between 0 and 100 km viewed
from the north in an inertial frame. Each trajectory is plotted from launch until the first engine cutoff.
All trajectories lead to an apogee of 300 km. Note the effect of the rotation of Earth on the initial rocket
velocity.

Because the equations of motion for the rocket through the Earth’s atmosphere cannot be
solved analytically, we chose to write a Python integrator to model the flight of the rocket.

At the start of each atmospheric launch, we give the rocket a thrust in the vertical
direction. After 10 s, the rocket pitches to the east at 0.5◦/s until its zenith angle is 8.5◦. At
this point, the rocket begins a gravity turn defined by Equation (8). The values of the pitch
rate and threshold pitch were determined by manual fine tuning. The model propagated
the equations of motion until the position and velocity of the rocket were such that it had a
trajectory with an apogee at the target orbit.

Above the Kàrmàn line, the rocket was modeled as an ideal rocket with only a payload
and fuel mass. We make no assumptions of empty stage or payload fairing masses. The
rocket’s trajectory was as a Hohmann transfer orbit between the tower rotating with the
earth and the target orbit. The rocket’s mass was computed such that it had exactly enough
fuel to achieve this. This meant that the initial total mass was, on average 51,000 kg.

5.2 Cost Analysis

The cost of building and launching a rocket has fixed costs and variable costs. The fixed
costs have to do with labor, insurance, etc., while the variable costs depend on the type of
mission, the rocket, and the payload. This analysis ignores all fixed costs and assumes a
cost model dependent only on the mass of the spacecraft and the energy used to transport
it. We also assume that the cost of building and maintaining the tower is a sunken cost and
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Figure 4: Acceleration (a), velocity (v), altitude (h) , zenith angle (α), and mass (m) for the Falcon 9
Surrogate launched from h = 0 km, all versus flight time. In the first two figures, the blue line represents
radial component while green line shows the azimuthal component.

does not factor into this analysis. We use

CT = C0 + C∆v + Cm + C∆h.

The total cost, CT , is the sum of the fixed cost, C0; the mission-specific cost, C∆v; the cost
of manufacturing, assumed to grow linearly with the mass of the launch vehicle, Cm; and
the cost of elevating the spacecraft, C∆h. With the atmospheric Falcon 9 Surrogate, Cm is
absorbed into the fixed costs because the spacecraft’s initial mass does not change. Given
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Figure 5: Various ∆v vs. launch altitude plots for the tower-launched Falcon 9 Surrogate (h0 < 100 km)
and the ideal tower-launched rocket h0 > 100 km. The burnout ∆v is an ideal value computed from the
fuel burned getting the rocket to the requisite altitude and velocity for an apogee at a 300 km altitude. The
“burnout v” is the actual velocity of the rocket at burnout; the difference between the burnout v and the
burnout ∆v illustrates the effects of atmospheric drag and gravity. The apogee ∆v is the ∆v at apogee
required to circularize the orbit. The sum of the apogee and burnout ∆v is the total ∆v, which decreases
as a function of launch altitude. Above 100 km, the elevator ∆v is the sum of both ∆vs required to get the
ideal tower-launched rocket in and out of a Hohmann transfer orbit terminating in a circular orbit with a
300 km altitude.

a $ 6.1 million difference in launch costs for a Falcon 9 between LEO and GEO and that
the difference in ∆v is calculated to be about 4 km/s, we adopt a marginal cost of ∆v for
the Falcon 9 Surrogate of dC

d∆v
= $1500 per m/s. The cost of elevation has been estimated

in work on space elevators at (from [6]) $ 220/kg at a change of about ≈ 50 MJ/kg of
potential between the surface and geosynchronous orbit. This means the cost of elevation
is $4.4 × 10−6 per joule of potential energy gained. From our previous results, we know
the Falcon 9 Surrogate saves about 3 m/s of ∆v for every additional kilometer of launch
height. This means that every additional kilometer of height saves the Falcon 9 Surrogate
about $5,000 worth of ∆v. The cost of elevating the fully-loaded Falcon 9 Surrogate, however,
increases much more rapidly at about $ 17,000/km. The total cost of elevating and launching
the Falcon 9 Surrogate is therefore $12,000/km. The tower thus does not save money below
the Kàrmàn line.

The ideal rocket launched horizontally above the Kàrmàn line, however, sees a dramatic
reduction in calculated mass as its launch height is increased, reflecting the increasing velocity
of the tower due to the rotation of Earth and lower orbital velocities as altitude increases.
Given that the cost of elevation is directly proportional to the mass of the rocket, which
ranges between 50,000 and 52,000 kg (roughly 12% of the mass of the Falcon 9 Surrogate)
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Figure 6

the elevation costs grow much more slowly than those of the Falcon 9 Surrogate at about $
2,000/km. The ∆v savings grow much more slowly and are swamped by the elevation costs.

Given that changing the altitude of the launch height does not change the total cost by
more than $ 2 million, a small fraction of the actual launch costs, we drop the Cm and C∆h

terms from our cost function and make the cost dependent only on mass and fixed cost.
Given a specific payload cost of $15,000/kg, a 10,000 kg payload, and a total mass of our
Falcon 9 Surrogate of 407,000 kg, we compute a cost per unit of bulk launcher mass of $ 368
/kg. Multiplied by the average mass of the space-based rocket, 51,000 kg, we get a total cost
of about $ 19 million, about 13% of the cost of the ground-based launch.

6 Discussion

6.1 Weaknesses

Our approach to this problem comes with a few weaknesses.
First, our calculations assume a launch from the equator directly towards the east. In the

real world, our launch tower would be at least slightly displaced from the equator. In that
case, the motion of the spacecraft could not be restricted to a plane and a three-dimensional
analysis would be necessary.

Next, we assume the Stage 2 fuel-burn creates a significant ∆v in an infinitesimal time
δt. In reality, the engines would be on for a significant period of time and a careful treatment
of the transfer from an elliptical orbit to a circular one would be required.

In addition, our method of numerical solution of the equations of motion could be better.
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We use a basic for-loop with time-step ∆t = 0.1 s
Most importantly, our approach for towers below the Kàrmànline gives insight into the

first-order energy saving effects of launching Falcon 9 Surrogate from a tower rather than the
ground. This is because we fix the mass of the spacecraft and compare the ∆v’s we require
from the fuel during the entire launch trajectory when lifting off from towers of differing
heights. To study higher-order effects, we should also vary the mass of the spacecraft for
towers of differing heights.

6.2 Strengths

When Falcon 9 Surrogate lifts off from a tower instead of the ground, its trajectory changes
most notably in the low altitude regime of the launch. Our model limits unnecessary ap-
proximations in this phase of the launch so that we can make the most accurate estimate of
the cost differences in lifting off from towers of differing heights. To ensure accuracy of our
model in the atmosphere, we used a two-dimensional analysis instead of using a simple 1D
liftoff. Also, we take into account the rotation of Earth and the rotation of the atmosphere
along with it to estimate drag effects most accurately.

In addition, our model uses a procedure similar to that taken for sending real satellites
into orbit [3]. Thus, we can claim that we obtain meaningful results that approximate the
real economic effects of increasing the liftoff height of a real launch.

Furthermore, when we assume that towers extending above the Kàrmànline could possibly
be constructed, we adjust our launch trajectory to account for the change in conditions. A
liftoff tangent to Earth’s surface is much more energy efficient than a vertical launch in this
regime since atmospheric drag is no longer an issue. Thus, our model produces results that
have meaning in each regime we studied.

Moreover, we modeled the Falcon 9 Surrogate in the style of a traditional rocket. There-
fore the costs we estimated can be directly compared to current costs of sending payload
into LEO.

7 Closing Remarks

We find that elevation costs and ∆v savings increase with altitude in both cases, though the
elevation costs increase much more quickly. These costs, however, are negligible compared to
the cost savings from the dramatically reduced mass of the space-based launcher. Because
the space-based launcher does not have to carry its fuel with it be lifted out of Earth’s
gravity well and through its atmosphere, it can afford to be much less massive than the
atmospheric launcher. Although the incredible costs and engineering challenges of building
a tower extending into space cannot be understated, the savings of nearly 90% on launch
costs make this option undeniably attractive.

References

[1] M. Cavcar. The International Standard Atmosphere (ISA), Anadolu University, Turkey.
(2000) URL: http://home.anadolu.edu.tr/ mcavcar/common/ISAweb.pdf



Team 352 14

[2] “Falcon 9 Launch Vehicle Payload User’s Guide”, Rev. 1, Space Exploration Technologies
Corporation. (2009). URL: http://www.spacex.com/Falcon9UsersGuide 2009.pdf

[3] F. J. Hale. Introduction To Space Flight, (Pearson Education, New Jersey, 1994).

[4] “Dryden Flight Research Center”, National Aeronautics and Space Administra-
tion website. 21 October, 2005. URL: http://www.nasa.gov/centers/dryden/news/X-
Press/stories/2005/102105 Schneider.html

[5] “NASA Safety Standard 1740.14, Guidelines and Assessment Procedures for Limit-
ing Orbital Debris”, Office of Safety and Mission Assurance. 1 August 1995. URL:
http://www.orbitaldebris.jsc.nasa.gov/library/NSS1740 14/nss1740 14-1995.pdf

[6] D. Raitt and B Edwards. ”The Space Elevator: Economics and Applications”, 55th
International Astronautical Congress, Vancouver, Canada. (2004).

[7] World Geodetic System, 1984, The National Geospatial-Intelligence Agency (2011). URL:
http://earth-info.nga.mil/GandG/wgs84/index.html.


