
The Physics of a Three Point Shot

Team 379: Problem B

Abstract–Accurately predicting the trajectory of a spinning basketball through air and
as it interacts with a rim and a backboard, poses several interesting problems. Solving
these problems requires an understanding of the effects of lift and drag on the ball as well
as the outcomes of collisions between the basketball and the backboard and the rim. We
have developed a simulation to predict the trajectory of a basketball as it navigates these
obstacles and explored the set of velocities and spins that a basketball can have as it is
thrown from the three-point line. Our results indicate that backspin on a basketball allows
shots to be made with smaller initial velocities; these results also indicate that it is more
favorable to bank the ball off of the backboard into the net.
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The Physics of a Three-Point Shot
Team 379

I. INTRODUCTION

A great American pastime, basketball raises many inter-
esting questions for the curious physicist. By studying

the physics behind a basketball shot, physicists can develop
insight into the shooting conditions most likely to result in
a successful shot, and therefore may help basketball players
focus their training on the parameters most likely to imporve
their performance. In this paper, we focus our study on
shots taken from the three-point line, and investigate what
combinations of spin and initial velocity result in the ball
entering the net.

Determining the set of velocities and spins necessary to
successfully shoot a basket requires a discussion of projectile
motion as well as the kinematics of colliding bodies. In order
to investigate this solution space we developed a numerical
simulation to model the trajectory of a basketball as it is shot
at a basket.

II. THE SCENARIO

Suppose a player in an Olympic basketball game is standing
6.2m from the basket and 45◦ from the principle axes of the
court. We are interested in finding the possible velocities and
spins that will allow the player to score a basket.

Prior to developing our model we must define or coordinate
system. We have chosen to center our coordinate system at the
position of the player, and we have defined the x,y and z axes
as depicted in Figure 1. Occasionally it has proven uesful to
consider a spherical coordinate system instead of a cartesian
coordinate system. In this case we have defined the polar angle
(θ) relative to the x-axis and the angle of elevation (φ) relative
to the floor of the court. Also of interest is the goemetry of
the backboard and the rim; these are depicted in Figure 2.

Fig. 1. The position of the player on the court relative to the rim (Figure
modified from the International Basketball Federation’s Official Basketball
Rules 2010 [2])

Similarly, Appendix A contains various parameters obtained
from the International Basketball Federation, FIBA, which

governs the rules of international basketball including the
Olympics [3].

Fig. 2. The dimensions of the backboard and relative dimensions of the
rim (Figure modified from FIBA’s Official Basketball Rules 2010: Basketball
Equipment [3])

III. MODEL

Our model simulates the trajectory of a spinning basketball
from the moment it leaves a player’s hands until it falls below
the height of the basket, at which point the simulation deter-
mines whether or not the shot was successful. The simulation
consists of two regions: projectile motion through the air and
collisions with the backboard and rim.

A. Path through air

1) Theory and Assumptions: A spinning ball in the air is
subject to three forces: gravity, drag and the Magnus force.
Therefore, the motion of the ball is governed by the following
equation:

d2~r

dt2
= ~g +

1

mball

(
16

3
π2r3ballρ~ω × ~v − .5CdρA|~v|2v̂

)
(1)

where ~r, ~v, and ~ω are the position, velocity, and angular
velocity of the basketball, ~g is the acceleration due to gravity,
mball, rball and A are the mass, radius, and cross-sectional
area of the basketball, ρ is the density of air and Cd is the
drag coefficient of the basketball in the air which we found
in literature to be 0.54 [1] [6]. The first term in Equation 1
accounts for gravity, the second term accounts for the Magnus
force due to the ball’s spin [4] and the third term accounts for
the drag force [7]. For simplicity, the basketball was assumed
to be spinning with a constant angular velocity throughout
its trajectory. It was also assumed that the spin was purely
backspin, meaning that the axis of rotation lies in the xy-plane
and is perpendicular to the ball’s trajectory.
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2) Implementation: Equation 1 was solved numerically
using a 4th order Runge-Kutta differential equation solver in
MATLAB. The trajectory through the air was calculated until
the ball either collided with the backboard or rim (see below)
or fell below the height of the hoop.

B. Collisions

1) Theory and Assumptions: Collisions between a basket-
ball and the backboard or the rim are affected by the material
properties of the basketball, the backboard and the rim as well
as the motion of all of the components involved. The rim and
the backboard can be assumed to be at rest before the collision,
any small vibrations that these exhibit before and during
the collision will not significantly affect the ball’s trajectory.
Considering frictionless collisions simplifies the situation by
eliminating the effect of the ball’s spin on the outcome. This
simplifying assumption may have a measurable effect on the
outcome of the simulation. During the collision between the
ball and the backboard or the rim, both bodies will deform;
resistive forces during this deformation will dissipate kinetic
energy making the collision inelastic. In a perfectly elastic
collision the impulse would be equal to twice the momentum
of the ball in the direction perpendicular to the plane of
collision. This change in momentum is given by:

∆~p = 2
~p · ~n
||n||2

~n

where ~n is a vector normal to the plane of collision. Given the
simplifying assumptions and an inelastic collision, however,
the impulse is given by:

∆~p = (1 + ε)
~p · ~n
||n||2

~n

where ε is the coefficient of restitution of the basketball
(0 ≤ ε ≤ 1). This coeffient of resitution is determined by
the material properties of the ball as well as the backboard.
Olympic regulations mandate that the coefficient of restitution
between the backboard and the basketball (εb) must be greater
than .5; the same regulations mandate that the coefficient of
restitution between the basketball and the rim (εr) must be
between .65 and .5 [3]. Because the collision is assumed to
be frictionless, the momentum parallel to the collision plane
is conserved.

2) Implementation: In order to incorporate collisions into
the simulation we subdivided the simulation into several
smaller simulations. During each of these sub-simulations
MATLAB’s ordinary differential equation solver was used to
predict the path of the basketball until it either reached a
collision point or met a terminating condition (i.e. the ball
missed the backboard or fell below the rim). Once a collision
was detected, the collision plane was determined and the
impulse was calculated, the ball’s resulting velocity was then
used as an initial condition for the next sub-simulation. This
process was repeated iteratively until a terminating condition
was met, at which time the ball’s position could be evaluated
to determine if the player had scored. The simulation code,
including the math used to identify collisions and determine
the collision plane, can be found in Appendix B.

IV. RESULTS

To investigate the possible initial condidtions of the basket-
ball shot, we varied both the initial velocity and the spin of
the basketball. We investigated the initial velocity in terms
of three components: the speed v0, the angle of elevation
φ (measured up from the ground), and the polar angle θ
(measured counterclockwise from the x-axis). With θ = π

4 and
no spin, Figure 3 shows in grey which values of v0 and φ result
in a successful shot. These results are similar to those obtained
by Silverberg, Tran and Adcock [5] in their simulations of
basketball free-throws.

Fig. 3. Speeds and angles of elevation resulting in successful shots when
θ = π

4
and the ball has no spin.

In Figure 3, the largest continuous area of grey represents
all the the shots during which the basketball either enters the
net directly without any collisions or bounces off the inside of
the rim before entering the net. The thinner parabolas outside
of the thicker area represent the shots in which the ball hits
either the front or back edge of the rim, bounces upwards, and
then falls back down into the net. The irregularities near the
vertex of the thick parabola are due to shots in which the ball
just barely hits the top of the hoop and then bounces away
instead of bouncing in. It is worth noting that for shots with
θ = π

4 there are no successful cases in which the ball hits
the backboard. This is because a collision with the backboard
would occur directly above the hoop, causing the ball to
bounce off to the side, therefore missing the shot.

Assuming that a player were aiming his shot directly
towards the net, Figure 3 shows that the player should attempt
to shoot with an initial speed of approximately 9 m/s at an
angle of elevation of .85 radians. This shot would provide
the greatest chance of success because there is a large region
around that point within which the shot would still be suc-
cessful. In Figure 3, it can also be seen that the top half of the
parabola is thicker than the bottom half. This means that the
range of small angles for which the basketball enters the net
is smaller than the range of large angles. This result indicates
that throws shot with a larger angle of elevation are more
likely to be successful than those shot with a smaller angle of
elevation, because there is a greater tolerance for error.
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A similar situation is seen when the basketball is given
backspin. Figure 4 shows the possible successful shots when
θ = π

4 and the ball has a backspin of two revolutions per
second. This graph shows the same trends as Figure 3, but
with the parabolas shifted towards lower velocities and angles
of elevation. This effect is because the backspin of the ball
creates a lift force that opposses gravity, thereby allowing shots
that would otherwise be too low to be successful. Therefore,
by introducing backspin to a shot, basketball players can shoot
with lower initial speeds.

Fig. 4. Speeds and angles of elevation resulting in successful shots when
θ = π

4
and the ball has a backspin of two revolutions per second.

Often basketball players use the backboard to place the ball
in the basket. We investigated the possible angles, the angle
of elevation of the shot as well as the polar angle of the shot.
Figure 5 provides a depiction of the angles that will allow a
ball to enter the basket.

The two nearly symmetric regions on the left of Figure 5
are centered around an angle of π

4 , indicating that these are
shots that do not collide with the backboard. As the polar angle
of the shot increases there is a region for which no shots will
enter the basket (for the particular speed chosen). These angles
correspond to shots that may or may not collide with the rim
or the backboard, but nonetheless do not enter the basket. At
a polar angle of approximately .825 radians, a large region
of successful shots is found. These are ”bankshots” that the
player has bounced off of the backboard and into the basket.

It is interesting to note that this region is much larger
than either of regions that did not involve collisions with the
backboard. This observation accounts for the reason that most
successful shots employ the use of the backboard.

To further investigate the bankshots, we searched for suc-
cessful shots of various elevation angles and speeds at a fixed
polar angle of .85 radians. The results of this simulation can be
seen in Figure 6. As one might expect, these results are similar
to those at a polar angle of π

4 , seen in Figure 3, with a shifted
origin. There is a remarkable difference between the vertices
of the parabolas, however. The bankshots do not exhibit the
chaotic behavior that the other shots do. Shots that are aimed
directly at the basket have the possibility of skipping off of
the rim, while shots aimed at the backboard to not have this
danger.

These results indicate that it is both safer and more likely
that a basketball will enter the basket if it is shot at the

Fig. 5. The range of angles that would allow a shot of 9.25m/s to enter the
basket. This figure shows a region of possible bank shots (right), as well as
two regions that will not collide with the backboard

backboard.

Fig. 6. The spread of speeds and elevation angles that can result in a
successful shot at a polar angle of .85 radians. Similar to Figure ??, but
does not exhibit chaotic behavior at the vertex of the parabola.

V. DISCUSSION

The differential equations that describe the motion of a
spinning basketball through a fluid are non-linear, and as
a result no closed-form solutions can be found. Numerical
methods that approximate solutions can be powerful tools in
analyzing solutions. One of the principle strengths of our
approach is the ability to approximate these ”impossible”
solutions. We have found that putting backspin on a ball allows
players to shoot with lower initial speeds. In addition, when
standing at an angle from the hoop, shots off the backboard
are both easier and more likely to be successful.

Several simplifying assumptions were made in order to
maintain the speed and efficiency of simulation. Some of
these assumptions were more valid than others. Vibrations
and deformations in the backboard and rim, for example, were
ignored because they would consume lengthy processing times
with very little effect on the result. The friction during colli-
sions, however, probably greatly affects the outcome of a shot
that bounces off of the backboard or the rim; ignoring these
effects sacrifices the accuracy of the simulation, while im-
proving processing efficiency. Other assumptions were made
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for ease of visualization. It is difficult to visualize solution
spaces that exist in more than two dimensions; unfortunately
the solution space for this problem is six dimensional -
three dimensions for linear velocity and an additional three
for angular velocity (spin). As a result we eliminated two
dimensions by considering purely backspin on the ball; this
is the way most basketball players shoot.
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A Model Parameters

Basketball Properties
Circumference 0.75 m
Mass 0.600 kg
Rim Properties
Inside Diameter 0.45 m
Metal Diameter 0.02 m
Height from Floor 3.050 m
Distance from Bottom of the Backboard 0.150 m
Minimum Horizontal Distance to Backboard 0.151 m
Coefficient of Restitution 0.65
Backboard Properties
Width 1.8 m
Height 1.05 m
Coefficient of Restitution 0.60

Table 1: The various values obtained from the International Basketball Federation’s Official
Basketball Rules 2010: Basketball Equipment [3]

Initial Height of Basketball 6 m
Drag Coefficient 0.54

Table 2: Parameters we assumed

B Source Code

function score = Basketball noPlot(varargin)
global omega
%% Manage Inputs
if nargin==0

speed = 8.7;
phi = .7;
theta = pi/4;
omega = [1;-1;0];

else
speed = varargin{1};
phi = varargin{2};
theta = varargin{3};
omega = varargin{4};

end
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%% Define Constants
r ball = .75/(2*pi);
r hoop = .225;
h hoop top = 3.050;
h bb = 1.050;
w bb = 1.800;
pos hoop = 6.2/sqrt(2)*[1;1;0] + h hoop top*[0;0;1];
pos bb = pos hoop + [0;r hoop+.151;h bb/2-.15];

%% Initial Conditions
Vx = speed*cos(phi)*cos(theta);
Vy = speed*cos(phi)*sin(theta);
Vz = speed*sin(phi);

nextPosition = [0,0,2];%position
nextVelocity = [Vx,Vy,Vz];%velocity
nextTime = 0;

%% Setup Options
function [value,isterminal,direction] = events(¬,Y)

%escape past rim
value(1) = Y(3) - h hoop top;
isterminal(1) = 1;
direction(1) = -1;

%escape past backboard
value(2) = Y(2)-pos bb(2);
isterminal(2) = ¬inRect(r ball,w bb,h bb,Y([1,3]),pos bb([1,3]));
direction(2) = 1;

%escape in x-dir
value(3) = Y(1) - 6.2/sqrt(2) - w bb/2;
isterminal(3) = 1;
direction(3) = 0;

%collide with the backboard
value(4) = distanceToRect(w bb,h bb,Y(1:3),pos bb)-r ball;
isterminal(4) = 1;
direction(4) = -1;

%collide with the ring
value(5) = distanceToRing(r hoop,Y(1:3),pos hoop)-r ball;
isterminal(5) = 1;
direction(5) = -1;

%the ball has fallen below the floor
%catch any missed cases
value(6) = Y(3);
isterminal(6) = 1;
direction(6) = 0;

end

options = odeset('Events',@events,'RelTol',1e-5);
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%% Iterate through all bounces
while(true)

Y0(1:3) = nextPosition;
Y0(4:6) = nextVelocity;
[T,Y,¬,¬,IE] = ode45(@Equations Of Motion,[nextTime,nextTime+10],Y0,options);
if IE(end) == 1 | | IE(end) == 2 | | IE(end) == 3 | | IE(end) == 6

break
elseif IE(end) == 4

%collision with the backboard
n = [0,-1,0];
energyAbsorbtion = .5;

elseif IE(end) == 5
%collision with the hoop
n=minDiscplacementFromHoop(r hoop,Y(end,1:3),pos hoop);
n=n/norm(n);
energyAbsorbtion = .65;

end
[p1, p2] = parallelPerp(Y(end,4:6),n);
nextVelocity = p2-p1*sqrt(1-energyAbsorbtion);
nextPosition = Y(end,1:3);
nextTime = T(end);

end

%% Determine Score
score = norm(Y(end,(1:3))-pos hoop')<r hoop-r ball;

end

%% Simulation
function dY = Equations Of Motion(¬,Y)

Vel = Y(4:6);
Acc = Acceleration(Vel);

dY = [Vel;Acc];
end

function Acc = Acceleration(Vel)
global omega
C d = .54;
m ball = .6;
r ball = .75/(2*pi);
A = pi*r ballˆ2;
rho = 1;

F drag = -.5*C d*rho*A*norm(Vel)*Vel;
F magnus = 16/3*piˆ2*r ballˆ3*rho*cross(omega,Vel);

a = (F drag+F magnus)/m ball;
g = [0;0;-9.81];
Acc = a+g;

end

%% Helper Functions

function [parallel,perp] = parallelPerp(v1,v2)
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parallel = sum(v1.*v2)/norm(v2)/norm(v2)*v2;
perp = v1-parallel;

end

function test = inRect(r,w,h,p1,p2)
p = abs(p1-p2);
if p(1)≥w/2+r | | p(2)≥h/2+r

test = false;
elseif (norm(p-[w/2;h/2])≥r) && ((p(1)≥w/2) | | (p(2)≥h/2))

test = false;
else

test = true;
end

end

function d = distanceToRect(w,h,p1,p2)
%assumes that the Rect is in the x-z plane (as the backboard will be)
p = abs(p1-p2);
if p(1)<w/2 %if the center is inside the width

if p(3)<h/2
%distance from the point to the x-z plane
d=p(2);

else
%distance from the point to the horizontal edge
p = p-[0;0;h/2];
d = norm(p(2:3));

end
else

if p(3)<h/2
%distance from the point to the vertical edge
p = p-[w/2;0;0];
d = norm(p(1:2));

else
%distance from the point to the corner
p = p-[w/2;0;h/2];
d = norm(p);

end
end

end

function d = distanceToRing(r,p1,p2)
p = p1-p2;
d = norm([p(3),norm(p(1:2))-r]);

end

function X = minDiscplacementFromHoop(r,p1,p2)
%the hoop is assumed to be in the horizontal plane

p = p1-p2';
[¬,proj] = parallelPerp(p,[0,0,1]);
X = proj-proj/norm(proj)*r + [0,0,p1(3)-p2(3)];

end
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