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Analysis of Biological Structures in 

Hypergravity Environments 
Team 611: Problem B 

 

Abstract 

In this paper, we produce an analysis of how life would evolve differently on a planet with a 

mass eight times that of earth and a radius two times that of earth. We address this analysis by 

considering the effects of increased gravity on the dynamics and mechanics of the 

cardiovascular and musculoskeletal systems. We investigate the cardiovascular system by 

considering laminar flow in large and medium sized vessels, using the Navier-Stokes equations 

to model the blood pressure gradient. Additionally, we use scaling arguments of allometry to 

estimate how blood volume and capillary dimensions vary with gravity. We investigate the 

musculoskeletal system by considering a single bone and muscle extending from the animal 

body. We decompose bone stress into normal and shear components and treat muscle stress 

through equilibrium arguments to estimate changes in bone cross sectional area. This model is 

then used to constrain possible values of bone length and attachment angle. Additionally, we 

analyze the dynamics of legged locomotion using Froude numbers to demonstrate changes in 

gait as a function of gravitational acceleration. Finally, the effects additional factors including 

changes in atmospheric pressure and temperature are considered. Given these considerations, 

we propose that animals that evolve in this environment would be characterized by bones with 

twice the cross sectional area and approximately 30% less length than their earth counterparts. 

Leg bones would attach to the body at shallower angles, blood volume would approximately 

double and capillary size would increase, organ and heart size would increase, and animals 

would be shorter and more compact to compensate for higher blood pressure gradients. 

Additionally, we model gait as a function of gravitational acceleration to demonstrate that it 

would be increasingly difficult for animals to reach the most efficient modes of transportation, 

likely decreasing maximum speed. 
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1 Interpretation of the Problem 

 We will investigate how the structure of animals varies when the mass and surface area 

of a planet increases of factors of eight and two, respectively. Our main consideration is 

variation in skeletal structure and blood flow due to the change in surface gravity. We discuss 

physiological changes relative to an equivalent animal on earth, assuming that these changes 

will give the new animal the same functionality as the equivalent earth animal.  

1.1  Introduction 

 Recent discoveries by instruments such as the Kepler Telescope have revealed an 

incredible number of exoplanets, many of which are earthlike. Of these, a significant number 

have been found in the habitable zone, allowing for the possibility of life. While life may exist on 

these planets, it is possible that the conditions under which it forms and thrives differ 

significantly from those on earth. In this paper, we consider how creatures on a habitable planet 

of eight times the mass and twice the radius of earth would differ from those found on earth. 

 In this paper, we begin by considering gravity and its direct and indirect effects on the 

biological systems of terrestrial homeotherms. We propose that the factors which most greatly 

constrain and evolution and structure of life on this exoplanet will be changes in the 

cardiovascular system, the musculoskeletal system, and atmospheric pressure. We describe 

each system independently, producing a mathematical model of the effects of gravity on each of 

these three factors, before combining the results to predict such factors as bone dimensions 

and blood volume. Throughout the paper, we presume that evolution on this planet will produce 

animals with approximately the same functions as those on earth.  

 

2  Model 

2.1  Assumptions and Overview 

 In this paper, we treat the planet as a sphere surrounded with a thin atmosphere. Given 
an exoplanet with a mass eight times that of earth and a radius that times of earth, it is simple to 
show that gravitational acceleration at the surface will scale as 

  
 

  
 

Hence gravitational acceleration at the surface will be two times that of earth. We have also 

considered the centripetal acceleration caused by the rotational motion of the planet. The 

centripetal acceleration is given by 

   
  

 
     

Since   is larger in the case of the exoplanet, it is important to consider if the centripetal 

acceleration could become a significant factor. We have plotted 
      

    
 (i.e. the relative rotational 
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acceleration) vs. the period of the planet’s rotation. From this plot, we observe that the 

exoplanet would have to be rotating at least 10 times faster than earth for the centripetal 

acceleration to factor significantly into the forces experienced at the surface. Hence we assume 

that the rotation rate does not significantly contribute to the acceleration of objects near the 

surface of the exoplanet.  

 

Fig. 2.1.1 Rotational acceleration as a function of planet rotation.  

Given such a drastic change in gravitational acceleration, we assume that difference in gravity 

accounts for the most significant differences between the organisms on this exoplanet and 

those on earth. It is thus important to consider the factors which are most influenced by these 

changes. In this paper, we consider: 

(1) Cardiovascular System: The cardiovascular system must be capable of delivering blood 

throughout the body and removing waste products. Blood must be pumped against 

gravity to body parts above the heart and brought back from lower extremities against 

gravity to prevent pooling. This is accomplished through the force of contraction in the 

heart and the elasticity and dimensions of arterial blood vessels. We model blood flow 

mathematically to predict changes in blood pressure and other changes in the 

cardiovascular system. 

(2) Skeletal System: Perhaps the most obvious structural requirement of an organism is 

adequate support of body mass. When the force of gravitational loading exceeds 
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cohesive forces holding together a structure, that structure will collapse. Thus, in a 

vertebrate it is necessary to increase the strength of supporting skeletal parts to 

compensate for increased gravitational loading, a phenomenon seen on earth in the 

scaling of bone cross-sectional area to animal mass [1]. In this paper, we describe a 

model of the gravitational stresses on a skeletal system and predict how the system will 

be scaled, and with what efficiency, to compensate for increased gravitational loads.  

(3) Consideration of changes due to atmospheric surface pressure and surface 

temperature. 

Further assumptions are states throughout the paper. 

2.2  Cardiovascular System 

To understand how the cardiovascular system will change, we will model blood flow through the 

circulatory system using the Navier-Stokes equations and study changes in blood pressure as a 

function of gravitational acceleration.  

We can describe viscous flow with the Navier-Stokes equations, which accurately model the 

laminar flow experienced in medium or large arteries [4]: 

  

  
  (   )         ( )          

where u is velocity, P is the fluid pressure, µ is the dynamic viscosity of the fluid,  f  is the 

external force per unit volume, and 

 ( )  
      

 
 

is the strain rate. The second term of the top equation is the convective term and the strain rate 

is the diffusive term. If the Reynold’s number is low (less than 1000) the flow is laminar while if it 

is high the flow is turbulent. During peak systolic velocity, some flow instabilities occur at the 

aortic valve. In all other cases the blood flow is laminar [4]. We can rewrite the first equation to 

solve for the pressure gradient, 

         ( )  
  

  
  (   )  

Blood can be assumed to have constant density with constant velocity as a function of   [4]. In 

our comparison of blood pressure gradient on earth to our super-earth, we assume the 

following: 

 

1.       per unit volume, so               

2. The radial and polar components of the velocity are zero:         
3.              constant 

4.          
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We can further assume that velocity u is only in the direction along the vein, say the  ̂ direction, 

and that it is a laminar flow. Thus, we assume that velocity only changes in the radial direction. 

Then   is a function of only one variable, r, so we can write  
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We assume that velocity is time independent, so 
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By a dimensional argument, 
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Solving this differential equation is difficult, particularly when it becomes inhomogeneous from 

our external force fsup . As seen in derivations from the literature, our force term vanishes after 

considering the cylindrical momentum equations [9] and we obtain 
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Integrating, we find  
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where r is the radial distance from the center of the vein. We must have a finite u at    , so it 

must be that    . We model the blood as a laminar flow, so the no-slip condition requires that 

u is 0 at    , where R is the radius of the vein. These boundary conditions yield 

   
 

  

  

  
   

Then we find a velocity profile of 

   
 

  

  

  
(     ) 

From the above equations we can see that the gradient is roughly proportional to the external 

force per volume. In an environment with a gravitational acceleration of 2g, we expect that the 

blood pressure gradient will be tighter. That is, there will be a greater difference between the 

blood pressure at a point a and b on the creature’s appendage in 2g than in 1g. Let us examine 

two cases. 

Case 1: Assume that the cardiovascular system of the creature on the super-earth is identical to 

the cardiovascular system of a creature of similar size and build on earth. With an increased 

pressure gradient, the creature’s system has increased difficulty oxygenating and pumping 

blood. So the body must expend more energy because the heart feels a greater force. Shorter 

appendages create a shorter distance for the heart to pump blood through. We know       

   and that         , where W is work, F is force, E is energy, and Q is heat. So energy 

is roughly proportional to     . If we decrease the distance dz that we pump blood through 

while holding F constant, then we can decrease the energy the body must expend to pump the 

blood. Consequently, it is likely that a creature on the super-earth with an earth-like 

cardiovascular system will have a compact body with shorter appendages than its counterpart 

on earth. 

Case 2: Assume that the length of the creature’s appendages is comparable to that of a 

creature on earth with similar size and build. An increased pressure gradient means that the 

body must expend more energy to oxygenate its blood. If we hold dz constant, then in order to 

minimize the energy the heart expends the organ must become more efficient. This can be 

achieved by increasing the size, and consequently strength, of the heart. With each pump, a 

greater amount of blood is sent through the veins, so the heart has to spend less energy per 

unit of blood pumped. Thus, a creature on super-earth with earth-length appendages will need 

to develop a larger heart than its counterpart on earth. 



A n a l y s i s  o f  B i o l o g i c a l  S t r u c t u r e s  i n  H y p e r g r a v i t y  E n v i r o n m e n t s  | 7 

 

We deem it probable that a super-earth creature’s body will show a combination of the 

alterations in Cases 1 and 2. The creature will most likely have shorter appendages and also 

have a larger heart than its doppelganger on earth.  

2.2.1  Blood Volume as a Function of Weight 

By basic principles of geometry, it is possible to express the relationship between volume and 

surface area as a shape grows in size.  As an object undergoes a proportional size increase, 

the final volume is proportional to the cube of the initial volume and the final surface area is 

proportional to the square of the initial surface area. That is, 

      (
  
  
)  

where   and    are the initial and final volumes, respectively, and    and    are the initial and 

final lengths of the object.  The final area is described as, 

      (
  
  
)  

where   and    are the initial and final areas, respectively, and    and    are the initial and final 

lengths of the object.  This scaling difference between volume and surface area provides the 

basis of allometry, the study of the relationship of body size to physiology and anatomy. 

It is clear that bone cross-sectional area will not scale proportionally, and must instead be 

described using an allometric relationship [5]. Allometric scaling laws for various physical 

quantities have been found both theoretically and experimentally. Of particular interest are 

variations in characteristic radius, length, and number of capillary blood vessels as a function of 

gravitational acceleration. These quantities were determined by T.H. Dawson [3] to be: 

    
 
   

    
 
   

    
 
  

where   ,   , and    are the characteristic radius, length, and number of blood vessels, 

respectively.   denotes proportionality. Hence as gravitational acceleration increases, blood 

vessels increase in radius, length, and number. These laws apply both to single pulmonary beds 

and beds of capillaries in individual organs. Thus, ignoring other factors, organ size would scale 

with   in the same proportions. Additionally, we can consider the change in the total volume of 

blood in the capillaries. If we assume that capillaries can be modeled as cylinders with radius     

and length   , then the total volume of blood in the capillaries is, 

         
  

Of course, capillaries exhibit both curvature and tapering, so we can only conclude that, 
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Hence, 

    

So blood volume increases proportionally with gravitational acceleration.  

2.3  Musculoskeletal System 

We model the skeletal system by considering the normal and shear stresses on a bone as a 

function of gravity. Stress describes the internal forces that particles of a continuous material 

exert on one another. Stress can be broken down into normal and shear components. Here, we 

consider a bone with cross sectional area   to be a cylinder of uniform composition.  The 

normal and shear stresses can be expressed as  

  
  
 

 

  
  
 

 

Where   is the normal stress,   is the shear stress,    is the component of force normal to the 

cross sectional area of the bone,    is the component of force perpendicular to the bone, and   

is the cross sectional area of the bone. This can be expressed in terms of the gravitational 

acceleration   as, 

  
      

 
 

  
      

 
 

Where   is the mass of the creature and   is the angle of attachment between the bone and the 

body.  

As an animal walks, a vertical force of    acts on the foot, exerting a torque of         about 

the joint halfway up the leg. To maintain equilibrium, the muscle must exert an equivalent 

torque. If the muscle has a cross-sectional area  , a moment arm of   about the joint, and 

exerts a stress   , then the torque about the joint exerted by the muscle is, 

       

The system is in equilibrium, so, 
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In modeling variations of the musculoskeletal system as a function of gravity, we consider 

variations in  ,  , and bone length  . Considering the decomposed stresses and the above 

relationship for the stress exerted by muscle, we can constrain these variables. Let us first 

consider the cross sectional area  . As gravitational acceleration increases,   must increase to 

maintain constant stress to prevent the bone from breaking. To maintain constant total stress, 

  √      
  

 
 

must remain constant as g changes. Hence, because g doubles,   must also double. 

Next, we consider the angle   between the bone and body.   can vary between 0 and 
 

 
. On 

earth, smaller mammals tend to exhibit higher angles, with   decreasing with increasing mass, 

consistent with the equation for    above assuming constant muscle stress. Elephants, for 

example, have column-like femurs connecting nearly perpendicularly to their body [2]. We can 

verify that bones will not break for   
 

 
 by considering shear stress for the case of maximum 

(breaking point) shear. The maximum allowable   is, 

        
  
     

  
 

where      is the maximum shear that bone can withstand before fracturing, experimentally 

determined to be 51.6 MPa for human femurs [10]. This value is nearly constant between 

different species. Even for exceptionally large masses, the maximum shear will not be reached 

at     , a conclusion which seems both sensible and reassuring. Thus, we can safely conclude 

that     
 

 
. 

Finally, we consider the length   of the bone. Longer bones are more susceptible to fracture as 

gravitational acceleration increases, and thus we constrain bone length to        where    is 

bone length when gravitational acceleration is  . By assuming that the stress applied by muscle 

is relatively constant – i.e. the physical properties of muscle do not vary as a function of 

gravitational acceleration – and that muscle cross sectional area does not change considerably 

[1], we can use the equation for    to plot bone length and attachment angle, as shown below 

in fig. 2.3.1. The constants used to generate these curves were approximated for a human 

femur and quadriceps, although the same relationship is seen for any number of legs (see 

Appendix 1). 

The corner of this plot represents the point at which the product of   and   is minimized. Hence, 

the corner is the point at which muscle stress    is minimized. Presuming that an organism 

would evolve to minimize muscle stress, this corner represents the ideal values of   and  . 

Comparing the curve for    with that for   , we see that both   and   decrease as gravitational 

acceleration increases. Thus, we expect bone length to decrease and the angle between the 

bones and body to decrease (animal legs will straighten).  

From this plot, we can estimate that bone length and attachment angle will both decrease by 

approximately 30% when surface gravity doubles. As discussed in section 4.1, this estimate is 
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subject to considerable error, though we can confidently state that both bone length and 

attachment angle decrease as gravitational acceleration increases. 

 

Fig. 2.3.1 Plot showing the relationship between bone length and attachment angle on earth 

(1g) and the other planet (2g). The optimal length and angle for minimizing applied muscle 

stress is denoted by the corner of each curve, marked by the cross-hairs.  

2.4  Gait Patterns 

Here we analyze the dynamics of legged locomotion in a gravitational field by treating a walking 

limb as an inverted pendulum. The center of mass of the pendulum swings through a circular 

arc centered at the base of the limb. The gait can be analyzed by calculating the Froude 

number, defined as  

   
 

 
 

where   is a characteristic velocity and   is a characteristic wave propagation velocity. In our 

model of locomotion,  
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where    is the centripetal force about the center of motion and    is the gravitational force on 

the walking animal. Hence, 

   

   

 
  

 
  

  
 

Where   is animal mass,   is velocity,   is acceleration due to gravity, and   is the characteristic 

length, which we define as total leg length [1, 2].  

From this equation, we can also calculate the stride frequency as, 

   
  

  
 
    

  
 
   

 
 

Froude numbers essentially represent the dynamics of the object’s movement. In other words, if 

two objects have the same Froude number, then they are dynamically similar. As Alexander 

explains, the transition from walking to trotting for quadrupeds on earth appears to happen at a 

Froude number between 0.3 and 0.8. The transition from trotting to galloping occurs between 

2.0 and 3.0 [2]. 

When looking at the Froude number equation, it is observed that an animal moving at some 

speed   with characteristic length   on earth would have half the Froude number on the 

exoplanet. At the speed of a gallop on earth, for example, an animal would merely be trotting on 

the exoplanet. Another implication of Froude numbers is that for similar dynamics the stride 

frequency of an animal would be larger on the exoplanet than on earth. These results are 

summarized in the figures below where we have plotted Froude number and characteristic 

length to derive either the velocity or stride frequency. These results do not give precise 

information on the maximum speed of the animal. Rather, they suggest that as gravitational 

acceleration increases, it becomes increasingly difficult for animals to reach more efficient 

modes of locomotion; running is a more efficient mode of locomotion than walking, and hence 

animals prefer to run above a certain velocity. Animals on the exoplanet would take more strides 

and do so in a less efficient mode of locomotion for a given velocity, suggesting that their 

maximum speed would be lower than that of their earth counterpart.     
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Fig. 2.4.1 Stride length as a function of Froude number and leg length in 1g and 2g 
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Fig. 2.4.2 Velocity as a function of Froude number and leg length in 1g and 2g 

 

3  Additional Considerations 

3.1  Effects of surface temperature 

Our super-earth has an average temperature of 250K, well below the freezing point of water at 

273.15K. This poses a challenge to life’s dependence on liquid water. By Lambert’s cosine law, 

we know that the amount of insolation the planet receives falls off as     , where theta is the 

sun’s rays and the normal to the planet’s surface [11]. Thus, the poles will have a much lower 

temperature than the equator, just like earth. Earth has an average surface temperature of 288K 

[12] and ranges from an average temperature of about 215K at the South Pole to an average of 

about 300K at the equator. Let assume that the average temperature of the super-earth ranges 

from 190K at the poles to 285K at the equator. We note that the earth still has liquid water in the 

form of oceans at the poles due to currents transporting thermal energy from the equator. Let us 

also assume that the super-earth has oceans and currents allowing liquid water to exist at the 

poles. Life on earth exists at the poles. Polar bears, for example, are able to obtain water by 
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eating snow and prey. Their bodies break down the blubber from their prey to obtain the water it 

contains. Creatures living in the poles also have a thick layer of blubber to provide insulation. 

Thus, if life exists at the poles on the super-earth it must have some sort of insulation in the form 

of blubber and/or hair coat and be able to obtain water from the food it eats. Further, the poles 

of the super-earth are much colder than those of earth, so it is likely that creatures will either a) 

have much more powerful forms of insulation and obtaining water and/or b) live closer to the 

equator than to the pole of the hemisphere. If the average temperature of the super-earth 

equator is 285K, then life has the ability to be similar to what we find on earth in terms of 

temperature adaptations. Liquid water could also be easily found here, so it is probably that the 

bulk of the planet’s biomass.  

An interesting note is that the average surface temperature of the super-earth is roughly 

equivalent to the effective temperature of earth. We assume that the super-earth has an 

atmosphere and some plate tectonic activity, so the super-earth’s effective temperature will be 

much lower than 250K. 

The average surface temperature of earth is much larger than its effective temperature of 252K 

found from equating the absorbed power to the Stefan-Boltzman law: 

        

where P is the total power radiated from the object, A is the object’s surface area, ε is the 

object’s emissivity, σ is the Stefan-Boltzman constant, and T is the black body temperature. The 

surface temperature of earth is much higher because of the effect of greenhouse gases, in part 

produced from the earth’s plate tectonic activity.  

3.2  Effects of Atmospheric Pressure 

We now consider the changes due to atmospheric pressure on the exoplanet as compared to 

the earth. It is well known that atmospheric pressure is described as follows: 

 ( )     
              

   

  
 

where    is the pressure at the surface of the planet,   is the scale height of the atmosphere,    

is Boltzmann’s constant,   is the temperature of the atmosphere,   is the mean molecular mass 

of the molecules in the atmosphere,   is the acceleration due to gravity, and   is the height 

above the surface. To model the pressure differences between the earth and the exoplanet, we 

have made the ansatz that   will be essentially the same between the two planets. This is 

supported by the idea that the atmospheric composition of the two planets should be similar if 

there exist living creatures on both planets. Using  =250 K and               kg, we 

obtain a scale height of            km while the average            km. 

If we assume that the surface pressure of the exoplanet is equal to that of the earth, we observe 

that the atmospheric pressure of the exoplanet falls off more rapidly than that of the earth (see 

figure below). This indicates that any airborne creatures living on the exoplanet would have to 

compensate for a greater pressure difference over the change in height between which they fly 
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and where they obtain their food and water. Because compensating for an increase pressure 

gradient requires more metabolic energy expenditure, any flying creature would have to have 

better methods of expending less energy through this compensation. There is also the 

possibility that these airborne creatures would just feed on other airborne creatures creating two 

relatively independent food chains, one ground based and one air based. 

Fig. 3.3.1 Atmospheric pressure as a function of altitude. The solid lines indicate the pressure 

for the exoplanet given certain surface pressures. The dotted line represents the pressure fall 

off for earth. 

Conversely, if we were to assume that the atmosphere had the same composition as that of 

earth, then considering a given air column, 

  
 

 
 
  

 
 

Surface pressure would increase, leading to a higher partial pressure of oxygen at the surface 

and, consequently, less demand for red blood cells to carry oxygen. 

 

4  Results Summary 

We can combine the results of our above analyses to provide a general picture of life on this 

planet. For illustration purposes, we consider a four-legged animal living on the equator.  
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4.1  Changes in Musculoskeletal System and Locomotion 

The cross sectional area of supporting bones is expected to double. The length of supporting 

bones will decrease. Based on figure 2.3.1, we predict a decrease in bone length on the order of 

30%. Additionally, the angle between supporting bones (i.e. femurs) and the body will decrease 

such that legs will become more columnar than those found on earth. While we assumed that 

the proportion of muscle volume to body volume will remain relatively constant, as is true on 

earth, there is some allowance for increases in the proportion of muscle volume to counteract 

increased gravitational acceleration. Finally, it would be more difficult for the animal to run and 

the top speed would likely be lower. 

4.2 Changes in the Cardiovascular System 

Increased blood pressure gradients demand that animals in higher-gravity environments have 

more compact bodies with shorter appendages located closer to the heart. Because the heart 

must pump harder to send blood the same distance as on earth, we expect heart size to 

increase due to the demand for stronger heart muscles. Additionally, we expect capillary size to 

increase, leading to a blood volume approximately twice that of the earth counterpart. This also 

requires increased organ size. The demand for higher blood volume is consistent with the 

implication from the Navier-Stokes equations that heart size must increase. Additionally, the 

likelihood of higher atmospheric surface pressure suggests that in order to function at a similar 

level as its earth counterpart, the animal would require lower blood-oxygen saturation thanks to 

the higher partial pressure of oxygen at the surface. 

 

5  Discussion 

5.1  Weaknesses 

Our approach to solving this problem entails several inherent weaknesses. The cornerstone of 

our analysis of the cardiovascular system lies with viscous flow described by the Navier-Stokes 

equations outlined in section 2.2. This partial differential equation proved exceedingly difficult to 

solve numerically, and we instead had to provide a somewhat qualitative analysis of the 

equation’s consequences, which, while illuminating, is not completely rigorous. We did not 

consider changes in blood flow as capillary diameter approached the dimensions of red blood 

cells due to the presence of turbulent flow, but this could impact the functionality of an animal’s 

extremities [4]. Additionally, if blood volume indeed increases in proportion with gravitational 

acceleration, then volume approaches infinity in the limiting case, indicating that this relationship 

fails at higher gravitational accelerations.  

In analyzing the musculoskeletal system, we assumed that the proportion of muscle volume 

remains relatively constant as a function of gravitational acceleration, a supposition supported 

by the literature [1]. However, it is possible for muscle mass to increase exponentially without 

violating the equilibrium condition used to solve for   . It stands to reason that this and other 

quantities in our expression for    may be somewhat variable, which could impact fig. 2.3.1. 
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Perhaps more significantly, we assumed that evolution will limit the muscle stress by selecting 

for   and   values found at the corners of the curves in this plot. It is entirely possible, however, 

for   to remain constant while   changes more considerably, and vice versa, while the bone 

remains within the stress threshold.  

Although we modeled stride frequency and velocity as a function of leg length and Froude 

number, this did not provide us with a quantitative assessment of top running speed. It may be 

possible to assess this quantitatively by considering maximum stride frequency and the normal 

stresses at which bone fractures. 

5.2 Strengths 

We began by ruling out factors that could affect the creature’s structure. We found that the 

rotation rate of the planet does not considerably affect the acceleration of objects near the 

surface. This allowed us to restrict our investigation to the effects of the increase in gravitational 

acceleration on creatures.  

When discussing the effects of the increased blood pressure gradient in our cardiovascular 

section, we considered multiple cases. Our inclusion of these cases allowed us to more 

intensively compare super-earth creatures to creatures on earth. By doing so, we were also able 

to allow for the diversity of life that could be found on the planet from variations in appendage 

length and heart size.  

The independent modelling of the cardiovascular and musculoskeletal systems led us to the 

same conclusions about changes in shape and stature, which indicates their efficacy in solving 

this problem. In particular, the cardiovascular model limits height and discourages extremities 

due to increased blood pressure gradients while the musculoskeletal model limits height due to 

increased normal and shear stresses. In addition, we maintained a consistent conclusion that 

blood volume and organ size increase while appendage length decreases. The agreement 

between these models is encouraging. 

In our discussion of the musculoskeletal system, we considered the maximum shear that bone 

can withstand before fracturing to consider our bounds on the angle between bone and body. 

One of the most important components of our analysis was the ability to relate bone length and 

bone-body interface angle using the “l-curve” plot shown in fig. 2.3.1 following the assumption 

that the skeletal system can be modeled by decomposing shear and normal stresses. This 

allowed us to express how each quantity varies with respect to the other and to predict, ideally, 

the value for both quantities given information about muscle stress   .  
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6  Closing Remarks 

We conclude that on a planet with a mass eight times that of earth and a radius twice that of 

earth, life would differ significantly. Bone width and length would increase and decrease, 

respectively, and animals would become more compact with shorter extremities. Organs, 

including the heart, would increase in size, as would capillaries. Leg bones would meet the body 

at shallower angles, making the legs straighter and less mobile. Thus, in general, animals would 

likely be shorter, slower, and stockier. 
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Appendix 1 

Values used for fig. 2.3.1 

Variable Symbol Quantity Units 

Muscle Stress   100*103  

  
 

Bone cross-sectional 
area 

  273    

Bone radius   3   

Animal Mass   74.1    

 

Values were approximated based on the human femur and quadriceps. The same arguments 

from section 2.3 extend to animals with more limbs.  

Appendix 2 

Code used to generate figures (All coding done in C++) 

void RotationalForce(){ 
 
  TCanvas *c1 = new TCanvas("Rotational_Force", "Rotational Force", 0, 0, 700, 500); 
 
  c1->cd(); 
  TF1 *f1 = new TF1("Length vs. Theta on earth", "1.12/(sin(x)*9.8)" ,0 
,TMath::Pi()/6); 
  f1->SetTitle(" "); 
  f1->GetYaxis()->SetTitle("Length [m]"); 
  f1->GetXaxis()->SetTitle("Theta [rad]"); 
  f1->GetYaxis()->SetRangeUser(0,3.7); 
  f1->Draw(); 
 
  TLine *l1v = new TLine(.1068,0,.1068,3.7); 
  TLine *l1h = new TLine(0,1.12/(sin(.1068)*9.8),TMath::Pi()/6,1.12/(sin(.1068)*9.8)); 
  l1v->SetLineColor(2); 
  l1h->SetLineColor(2); 
  l1v->SetLineStyle(2); 
  l1h->SetLineStyle(2); 
  l1v->Draw("same"); 
  l1h->Draw("same"); 
 
  TF1 *f2 = new TF1("Length vs. Theta on Other Planet", "1.12/(sin(x)*19.6)" ,0 
,TMath::Pi()/6); 
  f2->SetTitle("Length vs. Theta on Other Planet"); 
  f2->GetYaxis()->SetTitle("Length"); 
  f2->GetXaxis()->SetTitle("Theta"); 
  f2->SetLineColor(4); 
  f2->Draw("same"); 
 
  TLine *l2v = new TLine(.075557,0,.075557,3.7); 
  TLine *l2h = new 
TLine(0,1.12/(sin(.075557)*19.6),TMath::Pi()/6,1.12/(sin(.07557)*19.6)); 
  l2v->SetLineColor(4); 
  l2h->SetLineColor(4); 
  l2v->SetLineStyle(2); 
  l2h->SetLineStyle(2); 
  l2v->Draw("same"); 
  l2h->Draw("same"); 
 
  TLegend *leg = new TLegend(.6,.6,.8,.8); 
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  leg->AddEntry(f1, "earth", "l"); 
  leg->AddEntry(f2, "Other Planet", "l"); 
  leg->Draw(); 
 
} 

 

void FroudeNumber(){ 
 
  TCanvas *c1 = new TCanvas("Froude_number", "Froude Number", 0, 0, 1300, 650); 
  c1->Divide(2,2); 
 
  c1->cd(1); 
  TH2F *h2vother = new TH2F("testingplots", "Velocity on Other Planet",50, 1, 3, 50, 
0.1, 2); 
  for(int i=1; i<=50; i++){ 
    for(int j=1; j<=50; j++){ 
      double points = sqrt(h2vother->GetXaxis()->GetBinCenter(i)*h2vother->GetYaxis()-
>GetBinCenter(j)*19.6); 
      h2vother->SetBinContent(i,j,points); 
    } 
  } 
  h2vother->GetXaxis()->SetTitle("Froude Number"); 
  h2vother->GetYaxis()->SetTitle("Length [m]"); 
  h2vother->GetXaxis()->SetTitleOffset(1.5); 
  h2vother->GetYaxis()->SetTitleOffset(1.5); 
  h2vother->GetZaxis()->SetTitle("Velocity [m/s]"); 
  h2vother->SetStats(false); 
  h2vother->Draw("SURF2"); 
 
  c1->cd(2); 
  TH2F *h2vearth = new TH2F("testingplotse", "Velocity on earth",50, 1, 3, 50, 0.1, 
2); 
  for(int i=1; i<=50; i++){ 
    for(int j=1; j<=50; j++){ 
      points = sqrt(h2vearth->GetXaxis()->GetBinCenter(i)*h2vearth->GetYaxis()-
>GetBinCenter(j)*9.8); 
      h2vearth->SetBinContent(i,j,points); 
    } 
  } 
  h2vearth->GetXaxis()->SetTitle("Froude Number"); 
  h2vearth->GetYaxis()->SetTitle("Length [m]"); 
  h2vearth->GetXaxis()->SetTitleOffset(1.5); 
  h2vearth->GetYaxis()->SetTitleOffset(1.5); 
  h2vearth->GetZaxis()->SetTitle("Velocity [m/s]"); 
  h2vearth->SetStats(false); 
  h2vearth->Draw("SURF2"); 
 
  c1->cd(3); 
  TH2F *h2fother = new TH2F("testingplotsf", "Stride Frequency on Other Planet",50, 1, 
3, 50, 0.1, 2); 
  for(int i=1; i<=50; i++){ 
    for(int j=1; j<=50; j++){ 
      points = sqrt(h2fother->GetXaxis()->GetBinCenter(i)/h2fother->GetYaxis()-
>GetBinCenter(j)*19.6); 
      h2fother->SetBinContent(i,j,points); 
    } 
  } 
  h2fother->GetXaxis()->SetTitle("Froude Number"); 
  h2fother->GetYaxis()->SetTitle("Length [m]"); 
  h2fother->GetXaxis()->SetTitleOffset(1.5); 
  h2fother->GetYaxis()->SetTitleOffset(1.5); 
  h2fother->GetZaxis()->SetTitle("Stride Frequency [Hz]"); 
  h2fother->SetStats(false); 
  h2fother->Draw("SURF2"); 
 
  c1->cd(4); 
  TH2F *h2fearth = new TH2F("testingplotfe", "Stride Frequency on earth",50, 1, 3, 50, 
0.1, 2); 
  for(int i=1; i<=50; i++){ 
    for(int j=1; j<=50; j++){ 
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      points = sqrt(h2fearth->GetXaxis()->GetBinCenter(i)/h2fearth->GetYaxis()-
>GetBinCenter(j)*9.8); 
      h2fearth->SetBinContent(i,j,points); 
    } 
  } 
  h2fearth->GetXaxis()->SetTitle("Froude Number"); 
  h2fearth->GetYaxis()->SetTitle("Length [m]"); 
  h2fearth->GetXaxis()->SetTitleOffset(1.5); 
  h2fearth->GetYaxis()->SetTitleOffset(1.5); 
  h2fearth->GetZaxis()->SetTitle("Stride Frequency [Hz]"); 
  h2fearth->SetStats(false); 
  h2fearth->Draw("SURF2"); 
} 
 
 
void CentripitalForce(){ 
 
  TCanvas *c1 = new TCanvas("Centripital_Force", "Centripital Force", 0, 0, 700, 500); 
  c1->cd(); 
  c1->SetLogx(); 
  c1->SetLogy(); 
 
  TF1 *f1 = new TF1("Acceleration vs. Rotation Period","x^2*.003436",0.1,30); 
  f1->SetTitle("Acceleration vs. Rotation Period"); 
  f1->GetYaxis()->SetTitle("Relative Rotational Acceleration"); 
  f1->GetXaxis()->SetTitle("Planet Rotational Period (rev/day)"); 
 
  f1->Draw(); 
 
} 
 
void Pressure(){ 

 
  TCanvas *c1 = new TCanvas("Pressure", "Pressuure", 0, 0, 700, 500); 
  c1->cd(); 
 
  double scaleheight=1.38*pow(10,-23)*250/(4.808*pow(10,-26)*2*9.8)/1000; 
  std::cout<<scaleheight<<std::endl; 
 
  TF1 *f1 = new TF1("1 atm","101.325*exp(-1*x/3.66099)",0,10); 
  f1->SetTitle(" "); 
  f1->SetLineColor(1); 
  f1->GetYaxis()->SetTitle("Atmospheric Pressure [kPa]"); 
  f1->GetXaxis()->SetTitle("Altitude [km]"); 
  f1->GetXaxis()->SetRangeUser(0,10); 
  f1->GetYaxis()->SetRangeUser(0,200); 
  f1->Draw(); 
 
  TF1 *earth = new TF1("2 atm", "101.325*exp(-1*x/(2*3.66099))" ,0 ,10); 
  earth->SetLineColor(1); 
  earth->SetLineStyle(2); 
  earth->Draw("same"); 
 
  TF1 *f2 = new TF1("2 atm", "2*101.325*exp(-1*x/3.66099)" ,0 ,10); 
  f2->SetLineColor(2); 
  f2->Draw("same"); 
 
  TF1 *f3 = new TF1("5 atm", "5*101.325*exp(-1*x/3.66099)" ,0 ,10); 
  f3->SetLineColor(3); 
  f3->Draw("same"); 
 
  TF1 *f4 = new TF1("1.5 atm", "1.5*101.325*exp(-1*x/3.66099)" ,0 ,10); 
  f4->SetLineColor(4); 
  f4->Draw("same"); 
 
  TF1 *f5 = new TF1(".5 atm", ".5*101.325*exp(-1*x/3.66099)" ,0 ,10); 
  f5->SetLineColor(7); 
  f5->Draw("same"); 
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  TF1 *f6 = new TF1(".2 atm", ".2*101.325*exp(-1*x/3.66099)" ,0 ,10); 
  f6->SetLineColor(6); 
  f6->Draw("same"); 
 
 
 
  TLegend *leg = new TLegend(.6,.6,.8,.8); 
  leg->AddEntry(f6, "0.2 atm", "l"); 
  leg->AddEntry(f5, "0.5 atm", "l"); 
  leg->AddEntry(f1, "1 atm", "l"); 
  leg->AddEntry(earth, "earth", "l"); 
  leg->AddEntry(f4, "1.5 atm", "l"); 
  leg->AddEntry(f2, "2 atm", "l"); 
  leg->AddEntry(f3, "5 atm", "l"); 
  leg->Draw(); 
 
} 

 

 


