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Abstract

Our task for the problem was to determine the probability
density that any molecule ejected from the fountain hits the
pond at the point (x, y), then the relevant problems can be
solved. To achieve the goal,we first modeled the water flux as
discrete small drops(with radius 10−3m ∼ 10−2m), and finally
got the analytic solutions. In this simple model, we ignored the
air resistance and interaction between water drops. We then
considered the correction of drops’ interaction by correcting
ejection function E. Then we added a correction for the drag,
After rough estimate of Reynolds number, we found that the
air resistance acted on the water drops satisfies a quadratic
form, we got numerical solutions to this problem with the help
of MatLab.
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1 Introduction

Projectile motion is a basic problem in kinematics, however, as the figure shows [4],
when we consider the situation of plenty of water drops ejected from a water fountain
in the air, we will be interested in the statistical result of these parabolas(like the
drops’ density falling into the pond), especially when air resistance correction and
drops’ interaction are included. In this paper, the ideal case’s result of drop density
in the pond is derived theoretically with arbitrary ejection distribution, then the
correction analyses is followed since we cannot ignore the influence of air resistance
and drops’ interaction.
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2 Models’ Assumptions

In the first stage, we assume that there is no air resistance and interaction between
drops. The analytic coordinates which drops fall down can be calculated. The ejection
distribution function E(θ, ϕ) and speed distribution function f(v) in our model can
be taken arbitrarily. The δ-like function f(v) is applied to obtain analytical solution.

In the second stage, the correction from interaction between water drops can be
partly included. We assume the fountain flux is small enough such that drops only
interact with other drops at the beginning of ejection. Since drops diverge in the air,
any water drop have less chance to reach other ones. Thus we ignore this part of
interaction and only consider the correction of ejection function E(θ, ϕ).

In the final stage, more practically, air resistance will be considered according to
the Reynolds Number R of the drops in the air. We will see the result cannot be
solved analytically. Numerical methods are used in this section. Water drops will
be assumed to be spheres with radius range 10−3m ∼ 10−2m, we also set ejection
velocity magnitude approximately be 10m/s. Further analyses in this paper under
NPT(normal pressure and temperature) will show the correction of r is not a ignorable
quantity.

3 Models in vaccum

3.1 Kinematic Theory

Since the symmetry of the case, we prefer polar coordinates (r, φ) if we analyse the
water drop distribution in the pond, and sphere-surface coordinates (θ, ϕ) is conve-
nient to describe the ejection direction of the fountain. Because of the principle of
kinematics,

r̈ = 0 (.)

z̈ = −g (.)

a parabola solution can be obtained by solving these differential equations, which is a
well known fact that projectile motion’s trajactory is a parabola. As the figure shows,
we first consider a water drop ejected from (0,0) by velocity v0 along the direction
(θ, φ) and hit the pond by velocity vf at coordinate(r, φ),

v0r = v0 sin θ (.)

v0z = v0 cos θ (.)

vfr = vf sin θ′ (.)

vfz = vf cos θ′ (.)

we take a shortcut here for the benefit of the symmetry of the parabola, which is
π − θ = θ′, we get:

v0r = vfr (.)

−v0z = vfz (.)
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Figure 1: Drops ejection schematic diagram and parabola diagram

and by (3.2), v̇z = −g, hence

vfz − v0z = −2v0z =

∫ t

0

−gdt = −gt (.)

therefore, time interval t between ejection and hitting in the pond is

t =
2v0z
g

=
2v0 cos θ

g
(.)

and we find the mapping of (θ, ϕ) 7→ (r, φ):

r = v0rt =
v20 sin 2θ

g
(.)

φ = ϕ (.)

The first equation shows a maximum distance of r is v20/g. And for a particular r,
it is possible to correspond two different θ which located in [0, π/4) and (π/4, π/2]
separately.

If a arbitrary ejection flux distribution function E(θ, ϕ) under a particular eject
speed v0 is considered, water drops ejected from dθdϕ hit rdrdφ (figure 3), we find

E(θ, ϕ)dθdϕ = ρ(r, φ)rdrdφ = ρ(r, φ)r| ∂(r, φ)

∂(θ, ϕ)
|dθdϕ (.)

where ρ(r, φ) is the drop distribution function in the pond, and ∂(r,φ)
∂(θ,ϕ)

is the Jacobian

determinant, according to (3.11) and (3.12)

∂(r, φ)

∂(θ, ϕ)
=

2v20 cos 2θ

g
=

2

g

√
v40 − r2g2 (.)
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Figure 2: Drops ejected from general coordinates interval dθdϕ hit interval rdrdφ

Notice that one particular r corresponds to two θ for most cases (except θ = π/4),
the inverse function of (3.11) can be written as two parts

θ1(r, v0) =
1

2
arcsin(rg/v20) (.)

θ2(r, v0) =
π

2
− 1

2
arcsin(rg/v20) (.)

here θ1 takes value from 0 to π/4, while θ2 takes value from π/4 to π/2. Hence,
according to (3.13), ρ(r, φ) can be written as two parts of E:

ρ(r, φ) =
g[E(θ1(r, v), φ) + E(θ2(r, v), φ)]

2r
√
v40 − r2g2

(.)

Moreover, if the speed distribution function f(v) of water-drop ejection is consid-
ered, ρ(r, φ) can be expressed by

ρ(r, φ) =

∫
g[E(θ1(r, v), φ) + E(θ2(r, v), φ)]

2r
√
v4 − r2g2

f(v)dv (.)

and (3.17) is just the special case of f(v) = δ(v − v0).
Now, the equation of drops’ distribution in the pond is obtained, which satisfies

arbitrary angular ejection of the fountain. A step-like function E(θ, ϕ) can be applied
if we want to confine the fountain angular ejection.

3.2 Analyses of δ-like f(v)

Since we have too many freedom degrees to choose E(θ, ϕ) and f(v), moreover, the
range of θ is uncertained for the fountain. In order to give examples, we choose a
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velocity magnitude distribution function:

f(v) =
1

2

√
π

a
exp(−a(v − v0)2), 0 < v < +∞ (.)

First, we take a→ +∞, that means f(v) is converging to δ function:

f(v) = δ(v − v0), 0 < v < +∞ (.)

v0 = 10m/s is chosen as a example for following analyses. We also take E(θ, ϕ) as:

E(θ, ϕ) =

{
1, 0 ≤ θ ≤ θ0
0, θ0 < θ ≤ π/2

(.)

We simply set function E as 1 where 0 ≤ θ ≤ θ0, which do not change the relative
value of the distribution. Because function E(θ, ϕ) is uniform respect to variable ϕ,
ρ(r, φ) is uniform respect to φ. Respectively, we are interested in the ρ− r graph. By
taking different θ0, we plot out Figure 3 by MatLab.

Figure 3: ρ − r graph when f(v) is a delta function,the unit for ρ(θ, φ) is arbitrary, θ0 =
kπ/16, k=1,2,...,8

As (3.18) has predicted, Figure 3 shows us ρ → ∞ when r → 0 and r →
v20/g (when θ0 ≥ π/4), which tells us the most probable place for drops falling



Team 807 Page 7 of 17

in is central point (r = 0) and the boundary (r = v20/g). The unit here for ρ is
arbitrary, and the distribution changes as θ0 growing.

To determine the circle around the fountain inside which exactly half of the water
lands, a analytic integral can be given according to (3.18)(3.20)(3.21):∫

within r

ρ(r, φ)rdrdφ =

∫ r

0

2πgdr√
v40 − r2g2

(.)

where we assume θ0 = π/2. So the water percentage β lands in radius r is :

β(v0, r) =

∫ r
0

2πgdr/
√
v40 − r2g2∫ rmax

0
2πgdr/

√
v40 − r2g2

=
2 arcsin(r/rmax)

π
(.)

where rmax = v20/g is known from (3.11). Let β be 1/2, then we can find

rhalf =
rmax√

2
=

v20√
2g

(.)

which characterized the median circle. For the example we given above,
rhalf = (10m/s)2/(

√
2× 9.8m/s2) ≈ 7.215m.

More generally, if θ0 is random, general form of β can be derived. We denote
r0 = v20 sin 2θ0/g, then, for 0 < θ0 < π/4

β(v0, r) =

∫ r
0

2πgdr/
√
v40 − r2g2∫ r0

0
2πgdr/

√
v40 − r2g2

=
arcsin(r/rmax)

arcsin(r0/rmax)
, r < r0, otherwise, β = 1

(.)
for π/4 < θ0 < π/2 and r < r0, we have,

β(v0, r) =

∫ r
0

2πgdr/
√
v40 − r2g2∫ rmax

0
2πgdr/

√
v40 − r2g2 +

∫ rmax

r0
2πgdr/

√
v40 − r2g2

=
arcsin(r/rmax)

2θ0

(.)
other wise, in other words, r0 < r < rmax

β(v0, r) =
2
∫ r
0

2πgdr/
√
v40 − r2g2 −

∫ r0
0

2πgdr/
√
v40 − r2g2∫ rmax

0
2πgdr/

√
v40 − r2g2 +

∫ rmax

r0
2πgdr/

√
v40 − r2g2

=
arcsin(r/rmax) + θ0 − π/2

θ0

(.)
Hence, general solution of rhalf which characterized median circle can be
solved by setting β = 1/2 (under different situations):

(3.25)→ rhalf = rmax sin(
1

2
arcsin(

r0
rmax

)) = rmax sin θ0 (.)

(3.26)→ rhalf = rmax sin θ0 (.)

(3.27)→ rhalf = rmax cos(
θ0
2

) (.)

3.3 Correction of ejection interaction

It’s obvious that water drops can interact each other. Momentum can be transmitted
from a drop to another, which leads to a dispersion of velocity distribution. Actually,
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Gaussian distribution for ejection speed is a better approximation than δ function. a
in (3.19) is chosen as 10 to describe dispersion in the following example.

f(v) =
1

2

√
π

10
exp(−10(v − 10)2), 0 < v < +∞ (.)

For the reason that (3,18) cannot be integrated analytically, we obtain the result by
MatLab: (Figure 4)

Figure 4: ρ − r graph when f(v) is a Gaussian function,with a = 10,the unit for ρ(θ, φ) is arbi-
trary, θ0 = kπ/16, k=1,2,...,8

We can see that the infinite divergence disappears when r is taken to be v20/g,
instead of infinity, a peak is nearby. This is due to the dispersion of Gaussian distri-
bution, some water drops are able to breakthrough the ’boundary’ v20/g. For the sake
of the dispersion of Gaussian distribution, ρ(θ, φ) becomes continuous, which is quite
different from Figure 3 when θ0 6= π/2. But the same point that both δ-like f(v)
and Gaussian-like f(v) have is, the most probable place for drops falling
in is the central point (r = 0) of the fountain. ρ goes to infinity due to E(θ, ϕ)
is non-zero at θ = 0, that makes ρ ∼ 1/r at r = 0.

Since the Figure 4 is the summary(integral) of different ejection speed, the water
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percentage β lands in radius r can be written as:

β̃(r) =

∫
β(v, r)f(v)dv (.)

β(v, r) can be seen from (3.25∼27). Obviously

rhalf = β̃−1(
1

2
) (.)

which determines the median circle size.

4 Models with Air Resistance

According to Newton’s 2nd law, if a drag force Fdv̂ of resistance applies on a droplet,
the motion equation becomes:

mv̇ = −mg − Fdv̂ (.)

where v̂ is the unit vector along v.
In order to determine the exact form of Fdv̂, the hydromechanics of air must be

concerned. Since we set the radius a range of the water drops is 10−3m ∼ 10−2m, and
the ejection speed approximately be 10m/s. Under the circumstance of NPT, we know
the coefficient of air viscosity η is 1.57×10−5m2/s, air density ρa is 1.184×kg ·m−3 [1].
We are able to find Reynolds Number:

1 < R =
2aρav

η
< 105

hence, drag force has the quadratic form [1]:

Fd =
CDρaAv

2

2
(.)

where CD is a experiencing coefficient, which can be determined in Figure 5. It’s
fortunate to see that Cd correspond to our R is very stable (∼ 0.5)

For sphere-like water drop, mass and cross section are:

m =
4πa3

3
ρw (.)

A = πa2 (.)

We denote k as CdAρa/2 and rewrite (4.1) as

r̈ = − k
m
ṙ
√
ṙ2 + ż2 (.)

z̈ = −g − k

m
ż
√
ṙ2 + ż2 (.)

We set two kinds of drops with radius a1 = 1mm and a2 = 5mm. Then mass
m1 = 4.189×10−6kg and m2 = 5.236×10−4kg, while coefficient k1 = 9.3×10−7s2 ·m−2
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Figure 5: CD −R graph [1]

Figure 6: Drops radius a1 = 1mm

and k2 = 2.325×10−5s2·m−2.With the help of MatLab, we use RKF45 method(Runge-
Kutta-Fehlberg Method) [3] to solve the differential equations (4.5) (4.6). Two sets
of figures related to the motions of drops are displayed as follows.

It’s remarkable that rmax is reduced to 8m for 5mm radius and even 4m for 1mm
radius, which not a tiny correction for origin rmax ≈ 10m. As what we have done in
section 3.2, we plot out histograms as ρ−r graph when θ0 = π/2 (Figure 8 & 9). The
result is similar to the last picture of Figure 3, since we only consider a particular
speed v0 = 10m/s here (δ-like f(v)). The most probable place for drop falling
into the pond, is r = 0 and r = rmax in this case. By sum up ρ rδrδφ by
MatLab, water quantity lands within radius r can be determined. Since Figure 8 &
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Figure 7: Drops radius a2 = 5mm

Figure 8: ρ− r graph for Drops radius a1 = 1mm

9 are un-analytical with discrete points, we take the closest point such that

β =

rhalf∑
r=0

ρ rδrδφ

rmax∑
r=0

ρ rδrδφ
≈ 1

2
(.)

In this special case, the radius of median circle, is

rhalf = 3.3024m for a1 = 1mm (.)

rhalf = 5.6770m for a2 = 5mm (.)
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Figure 9: ρ− r graph for Drops radius a2 = 5mm

5 Discussion

5.1 The Weakness

1.Since we don‘t have a closed analytic solution of the two order differential equa-
tions,then we just obtained some special solutions for certain initial conditions.
2.We assumed that E(θ, ϕ) is uniform in θ and ϕ for the general model,thus our result
might deviate from the actual situation.

5.2 The Strength

1. We use Fd ∝ v2 to simulate the drag force, actually Fd ∝ v is possible only for
fountains whose height is around 0.02m, this tiny fountain is of course out of interest.
Thus we obviously decrease the computational error.
2. We have discussed the proper evaluations of all the parameters and finally we
provided the corresponding figures, it‘s intuitionistic to understand the effect of each
parameter.
3. We simplified the interaction model and just concentrated on the main influence of
water drops interaction, that‘s to say, we give up analyzing and calculating the me-
chanics behind the interaction, since multi-body-interaction will make this problem
so complicated that no one can get a precise solution, thus we took a statistical view
of the interaction and ignored the low probable collisions, treating the macroscopic
effect of interaction as a Gaussian redistribution of ejecting velocity.
4. Based on the law of large number, we calculated the frequency distribution his-
togram by computer and then obtained an approximated density distribution of the
water flux which is much complicated if we calculated directly.
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A Appendix

A.1 Codes for section 3

A.1.1 Codes for δ-like f(v)

%

g=9.8;a=10;v0=10;

r=[0:0.01:v0^2/g];

rho=zeros(length(r),8);

A=0.5*sqrt(pi/a);

syms v F

for k=1:8

theta0=pi*(k)/16;

if theta0<=pi/4 && theta0>=0

for i=1:length(r)

judge=(r(i)<=(v0^2*sin(2*theta0)/g));

F=g/(2*r(i)*sqrt(v0^4-g^2*r(i)^2))*judge;

rho(i,k)=vpa(F);

end

elseif theta0>pi/4 && theta0<=pi/2

for i=1:length(r)

judge=(r(i)>=(v0^2*sin(2*theta0)/g));

F=g/(2*r(i)*sqrt(v0^4-g^2*r(i)^2))*(1+judge);

rho(i,k)=vpa(F);

end

else

warning(’theta0 should be in the right range’);

end

subplot(2,2,k);plot(r,rho(:,k),’-b’,’linewidth’,2);grid on;axis([0,v0^2/g+0.3,0,0.06])

xlabel(’r(m)’);ylabel(’\rho’);title([’\theta_0=’,num2str(k),’\pi/16’])

end

A.1.2 Codes for Gaussian-like f(v)

%plot out the graphs when v0=10, a=10, f(v) is Gaussian-like

g=9.8;a=10;v0=0;

r=[0:0.25:16];

rho=zeros(length(r),8);

A=0.5*sqrt(pi/a);

syms v F

for k=1:8

theta0=(k)*pi/16;

if theta0<=pi/4 && theta0>=0

for i=1:length(r)

F=g/(2*r(i)*sqrt(v^4-g^2*r(i)^2))*A*exp(-a*(v-v0)^2);

vc1=sqrt(r(i)*g/sin(2*theta0));

rho(i,k)=vpa(int(F,v,vc1,+inf),5);
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end

elseif theta0>pi/4 && theta0<=pi/2

for i=1:length(r)

F=g/(2*r(i)*sqrt(v^4-g^2*r(i)^2))*A*exp(-a*(v-v0)^2);

vc2=sqrt(r(i)*g/sin(2*theta0));

vc3=sqrt(r(i)*g);

rho(i,k)=vpa(int(F,v,vc3,+inf)+int(F,v,vc3,vc2),5);

end

else

warning(’theta0 should be in the right range’);

end

subplot(2,2,k);plot(r,rho(:,k),’-b’,’linewidth’,2);hold on

grid on;xlabel(’r(m)’);ylabel(’\rho’);title([’\theta_0=’,num2str(k),’\pi/16’]);

axis([0,12,0,0.01]);

end

A.2 Codes for section 4

A.2.1 Codes for parabola

m=4.1888*10^(-6);k=9.3*10^(-7);g=9.8;

%parameter m=(water)(4*pi*a^3)/3,k=0.25*pi*a^2*rho(air).

ts=0:0.001:2;%time

for i=-pi/2:0.02:pi/2 %varying theta from -pi/2 to pi/2

z0=[0;0;10*sin(i10*cos(i)];

%initial value :r(0)=0 z(0)=0 r’(0)=10*sin(i) z(0)’=cos(i)

fun=@(t,z)[z(3);z(4);

-k/m*z(3)*sqrt(z(3)^2+z(4)^2);

-k/m*z(4)*sqrt(z(3)^2+z(4)^2)-g];

[t,z]=ode45(fun,ts,z0);

subplot(121),plot(t,z(:,1:2));

xlabel(’t(s)’);legend(’r(m)’,’z(m)’);

title({’The Relationship Between the Horizontal/Vertical Distance and Time’;

’(a=1mm,v=10m/s, varies from -pi/2 to pi/2)’})

axis([0 1.48 0 7 ])

hold on

subplot(122),plot(z(:,1),z(:,2));

axis([-5 5 0 3 ])

title({’The Simulated Tracks of the Projectile Motion of Water Drops’;

’(a=1mm,v=10m/s)’})

xlabel(’r(m)’);ylabel(’z(m)’);

hold on

end

A.2.2 Codes for ρ− r graphs

function []=probability3

m=4.1888*10^(-6);k=9.3*10^(-7);g=9.8;%parameters
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N=5000; %Divide pi/2 into N parts.

ts=[0 2];

fun=@(t,z)[z(3);z(4);...

-k/m*z(3)*sqrt(z(3)^2+z(4)^2);...

-k/m*z(4)*sqrt(z(3)^2+z(4)^2)-g];

op=odeset(’Events’,@evenfun);

ang=linspace(0,pi/2,N);

x=nan(size(ang));

for i=1:length(ang);

z0=[0;0;10*sin(ang(i)); 10*cos(ang(i))];

[t,z,TE,ZE]=ode45(fun,ts,z0,op);

if TE>eps,x(i)=ZE(1);end

end

x=x(~isnan(x));

[nw,xout]=hist(x,100);%Divide x into 100 parts.

subplot(1,2,1),bar(xout,nw./(2*pi*xout));

xlabel(’r(m)’);ylabel(’quantity’);

title({’Frequency Distribution Histogram’;’(a=1mm, v=10m/s)’})

subplot(1,2,2),plot(xout,nw./(10000*pi*xout));

xlabel(’r(m)’);ylabel(’probability’);

title({’Fitted Probability Density Function’;’(a=1mm, v=10m/s)’})

end

function [value,isterminal,direction]=evenfun(t,z)

value=z(2);

isterminal=1;

direction=-1;

end

A.2.3 Codes for median circle

function []=probability1

m=4.1888*10^(-6);k=9.3*10^(-7);g=9.8;%parameters.

N=5000; %Divide pi/2 into N parts.

ts=[0 2];

fun=@(t,z)[z(3);z(4);...

-k/m*z(3)*sqrt(z(3)^2+z(4)^2);...

-k/m*z(4)*sqrt(z(3)^2+z(4)^2)-g];

op=odeset(’Events’,@evenfun);

ang=linspace(0,pi/2,N);

x=nan(size(ang));

for i=1:length(ang);

z0=[ 0; 0; 10*sin(ang(i)); 10*cos(ang(i))];

[t,z,TE,ZE]=ode45(fun,ts,z0,op);

if TE>eps,x(i)=ZE(1);end

end

x=x(~isnan(x));
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subplot(1,2,1),hist(x,100)

xlabel(’r(m)’);ylabel(’quantity’);

title({’Frequency Distribution Histogram’;’(a=1mm, v=10m/s)’})

[n,xout] = hist(x,100);

subplot(1,2,2),plot(xout,n/N);

xlabel(’r(m)’);ylabel(’probability’);

title({’Fitted Probability Density Function’;’(a=1mm, v=10m/s)’})

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%Solve For Median Circle

half=0;

for p=1:1:100

half=half+n(p);

if half>2500

break;

end

end

area=max(x)

median=area*p/100

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% median value get

end

function [value,isterminal,direction]=evenfun(t,z)

value=z(2)

isterminal=1;

direction=-1;

end


