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Abstract 

In this solution, we investigate the feasible club/ball interactions that eventually lead the 

golf ball to go around the tree (cylinder) and land in the given circular region. The presence of 

the Magnus force is concluded to be the main reason that drives the ball to fly in a circuitous 

trajectory around the tree. 

To clarify all the interactions within the process, the motion of the ball is divided into 

two stages—the Free-flight Stage and the Bouncing Stage. For the Free-flight Stage, four 

parameters (the loft angle, the drift angle, the azimuthal angle and the initial speed) are 

introduced to determine the initial interaction between the club and the ball. For the Bouncing 

Stage, we introduce the restitution coefficient and the frictional coefficient to describe the 

interaction between the ball and the ground. 

The dynamic model is established using the Newtonian approach. On a basic level, the 

trajectory of the ball is numerically solved with a particular set of parameters. To further 

specify the criteria that lead to satisfying shots, we study the feasible regions in parametric 

spaces—those regions that incorporate all parameters which result in successful shots—to 

present a detailed instruction on the golfers’ controls. Therefore, the task presented by the 

problem is accomplished on a technical level. 

However, given the fact that absolute accuracies never exist (especially in human 

controls), we evaluate the margin values of the system. The results reveals that, although 

some sets of the parameters are viable, the margin values of them are so small that allow for 

very little deviations in order to lead to the ultimate successful shots. Subsequently, an 

optimization on margin values is presented, hoping to enhance golfers’ chances of success. 

Finally, some preliminary results in the presence of wind force are also studies as an 

extended model. 
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1 Introduction
Nowadays, quantitative physical analysis is becoming an effective way of studying sports

games such as golf, which in turn helps people enhance their performances in those games[2, 3].
In problem B, we are required to find desirable ball/club interactions that will result in a golf
ball to go around a tree (modeled as a cylinder with infinite height) and eventually end up in a
circular region.

In our solution, the motion of the ball is divided into two stages: (a) the Free-flight Stage,
which is initiated by the ball/club interaction, and (b) the Bouncing Stage, which is associated
with the terminal interaction between the golf ball and the ground. For both stages, relevant
parameters are introduced to describe the interactions.

To present detailed instructions on how to play the desired shots, dynamic model is estab-
lished with Newtonian Mechanics and solved numerically. Feasible regions in parametric space
are calculated, in order to demonstrate the required parameters (such as the initial velocity, the
loft angle, the drift angle, the azimuthal angle, etc.) that can lead to successful shots. Moreover,
margin values of the system are defined, and used to optimize golfers’ chances of success in the
presence of the deviations of those parameters. Finally, the influence of wind on the golf game
is also studied.

2 Definitions and Variables

Table 1: Notation

Symbol Description
M The mass of golf clubhead.
m The mass of golf ball.
g acceleration of gravity.
R The radius of golf ball.
I The rotational inertia of golf call.
θ loft angle.
ψ drift angle.
γ azimuth angle.
V The velocity of the end point of club shaft.
Vclub/V

′

club The velocity of the end point of club shaft projected in the X-
OZ/XOY plane.

Vclubn/V
′

clubn the normal component of Vclub/V
′

club.
Vclubp/V

′

clubp the tangential component of Vclub/V
′

club.
Vcfn/V

′

cfn the normal component of the club head after hitting in the X-
OZ/XOY plane.

Vcfp/V
′

cfp the normal component of the club head after hitting in the X-
OZ/XOY plane.

Vbfp/V
′

bfp the normal component of the golf ball after hitting in the X-
OZ/XOY plane.
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Table 1: (continued)

Vbfp/V
′

bfp the normal component of the golf ball after hitting in the X-
OZ/XOY plane.

ωbf/ω
′

bf The angular velocity of golf ball.
CD Drag Coeffcient.
CA constant related to Magnus force.
S effective area.
ρair air density.
v‖ horizontal component of landing velocity.
v⊥ vertical component of landing velocity.
v

′

‖ horizontal component of the first rebound velocity.
v

′

⊥ vertical component of the first rebound velocity.
e restitution Coeffcient.
µ friction Coeffcient.
Lb bounce length.
Lr roll distance.
L the total run of the golf ball.
ωb/ωs backspin/sidespin of the golf ball.

3 Interactions between Golf Ball and Club

3.1 Assumptions

As we know, the interaction between a golf ball and club is an extremely violent collision.
The actual contact time is less than 0.5ms, during which the ball is accelerated from rest to
the the speed of over 200km/h [6]. Forces exerted on the golf ball are so large (with values
exceeding 5kN ) that solid ball is deformed severely as can be seen in the flash photographs
shown by Cochran and Stobbs [7]. In order to simplify the problem, we make the assumptions
as follows:

• The collision between a golf club and a golf ball is a completely inelastic collision.

• The club and the ball remains still relative to each other during the interaction.

• The velocity of the end point of club shaft ~V is parallel to the ground.

3.2 Theoretical Analysis

According to the experiments done by Cochran and Stobbs, it can be demonstrated that the
effect of the club shaft during the collision is not so significant and is negligible compared to
the impact force [7]. Assume without loss of generality that x′-axis is along the velocity of the
end point of club shaft (see Fig. 1(a)), thus ~V = V ~ex′ . The loft angle θ, which stands for the
angle between the club shaft and the club head, enables players to launch the golf ball. Also,
players can rotate the shaft along its central line to make a drift angle, defined as ψ, from the
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x′-axis (see Fig. 1(b)). Therefore, the initial velocity along the x′-axis and the angular velocity
of the ball are decided by the V , θ and ψ.

Figure 1 (a) The configuration of the Golf Course. Two coordinate systems are used in this
solution. The xyz frame is fixed on the Golf Course, whereas the x′-axis of the x′y′z′ frame
coincides with the velocity of the end point of the club shaft. (b) Illustration of the loft angle θ
and the drift angle ψ.

To further clarify the process, we project the surface of the club head and ~V onto the x′oz′

plane and x′oy′ planes (see Fig. 2). In each plane, the oblique impact can be divided into two
kinds interactions: the direct impact (which is normal to the surface of the head) and the rolling
between the head and the ball (which is tangential to the head surface). In x′oz′ plane, the
normal and tangential components of vclub are denoted as Vclubn and Vclubp respectively. We
assuming that the velocity components of the ball are Vbfn and Vbfp when it leaves the club
head, and the value of the velocities of the club head change to Vcfn and Vcfp (see Fig. 2).
According to the conservation of linear momentum in both normal and tangential directions,
we get {

MVcfn +mVbfn = MVclubn

MVcfp +mVbfp = MVclubp
(1)

where M and m are the masses of the club head and the golf ball, respectively. Similarly, the
conservation of angular momentum yields

mRVbfp + Iωbf = 0 (2)

where R and I are the radius and the rotational inertia of the golf ball, respectively. Due to our
first assumption, club head and the ball share the same speed after collision{

Vcfn − Vbfn = 0

Vbfp − Vcfp −Rω
′

bf = 0
(3)

Likewise, in the x′oy′ plane we have

MV
′

cfn +mV
′

bfn = MV
′

clubn

MV
′

cfp +mV
′

bfp = MV
′

clubp

mRV
′

bfp + Iω
′

bf = 0

V
′

cfn − V
′

bfn = 0

V
′

bfp − V
′

cfp −Rω
′

bf = 0

(4)
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Figure 2 The velocity and angular velocity components of the club head and the golf ball in the
x′oy′ and x′oz′ planes before and after the collision. Two components of ~V are defined as Vclub

(in the x′oz′ plane) and V
′

club (in the x′oy′ plane), respectively.

To solve Eq. 1 to Eq. 4, we need additional constrains on the x′ components of all the velocities:{
Vcfn cosθ +Vcfp sin θ − V ′

cfn cosψ−V
′

cfp sinψ = 0

Vbfn cosθ +Vbfp sin θ − V ′

bfn cosψ−V
′

bfp sinψ = 0
(5)

To present Eq. 1 to Eq. 5 in a more concise version, we use the following two column vectors
to contain all the variables respectively, and a coefficient matrix, denoted as P, to describe the
ten equation. 

MVclubx
0

MVclubz
0

0

0

0

0

0

0


= P



Vcfn
Vcfp
Vbfn
Vbfp
ωbf
V ′cfn
V ′cfp
V ′bfn
V ′bfp
ω′bf


(6)

where the matrix P is provided in the appendix A. Therefore, the ball/club interaction has been
modeled and clarified till now. By solving Eq. 21, we are able to determine the initial motion
of the golf ball. The subsequent free-flight motion will be studied in the following section.
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4 Free-flight stage

4.1 Theoretical Analysis

Once upon the golf ball leaves the surface of the club, its initial conditions, including the
velocity and the angular velocity, are determined. The subsequent motion of the ball will be
studied with the Newtonian approach. We assume that there is no wind in the Golf Course, thus
the golf ball will be affected by gravity, air resistance and Magnus Force.

y(m)

x(m) z(m)

(a)

(b)

Figure 3 The trajectories of the golf-ball during the Free-flight Stage with parameters of (a)
θ = π/8, ψ = π/8, γ = −π/4 and V = 58m/s; and (b) θ = π/6, ψ = π/8, γ = −π/4 and
V = 45m/s

We denote fair as the air resistance on the ball. It has been demonstrated [2] that the
resistance on the golf ball is in a quadratic form as follows

fair =
1

2
CDρairSv

2 (7)

where CD represents the drag coefficient, ρair represents the air density and S = πR2
ball repre-

sents aerodynamic cross-section. The drag coefficient depends on the Reynolds number of the
system, and the drag coefficient CD depends on the surface condition of the golf ball.

Other than air resistance fair, the golf ball is impacted by another aerodynamic force, name-
ly, the Magnus force fMagnus. The Magnus force is caused by the pressure differences around
an object due to its rotation, and is the main reason here that makes the golf ball to go around
the tree and, hopefully, hit the circular green. Theoretically, it is in the form of

fMagnus = CM(w × v) (8)
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where CM is identified as the Magnus coefficient and can be expressed as CM = π2

2
ρairCAR

3
ball.

Here CA represents a constant determined by the features of the golf ball’s surface and the
internal friction and viscosity of the air (usually satisfies CA ≤ 1).

Qualitatively, the rotations of golf ball can be subdivided into backspin (spin along the
y-axis) and sidespin (spin along the z-axis), in which Magnus Effect shows different effects.
Backspin placed on a golf ball will allow the ball to gain lift force, thus it will be able to have
a much longer flight. Meanwhile, sidespin placed on the ball will allow it to gain side force,
which will pull the ball back to the green when it flies out.

On making use of the Newton’s second law, and by combining with 7 and Eq.8, we can
obtain the dynamic equations during the Free-flight Stage,

mẍ = −1

2
CDρairSvvx + CM(wyvz − wzvy)

mÿ = −1

2
CDρairSvvy + CM(wzvx− wxvz)

mz̈ = −1

2
CDρairSvvz + CM(wxvy − wyvx)−mg

(9)

By solving the above ordinary differential equations numerically, we are able to figure out the
trajectories, some examples of which are illustrated in Fig. 3.

4.2 Differences between Smooth Ball and Dimpled Ball

(a) (b)

Figure 4 Illustrations of air flows around (a) smooth ball and (b)dimpled ball.

As mentioned above, the differences in the surface conditions of golf balls (such as smooth
ball and dimpled ball) may influence the aerodynamic properties of it. After reviewing litera-
tures, we want to briefly summarize how these surface conditions may effect the motion a golf
ball. Most of these results which are based on the bibliography [1] are not original, but they are
crucial for rationalizing the dynamic model we established above.

It is demonstrated [1] that the air flow around smooth ball and dimpled ball are shown in
figure 4(a)(b). Since the dimpled ball has many dimples on its surface, they will produce some
small air vortices. These air vortices will drag the air molecules to the surface of the ball, thus
such turbulent flow allows for a smaller separation of air flow around the ball, creating a smaller
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area of low pressure behind the ball and causing deceleration at a slower rate than the smooth
ball. Therefore, the magnitude of the Magnus force declines a lot with the dimples

The affect of the differences between a smooth ball and a dimpled ball can also be reflected
by their drag coefficient CD. According to previous researches, drag coefficient changes with
Reynold Number Re, and a dimpled ball has a much smaller drag coefficient than a smooth
ball[1]. Once upon the drag coefficient declines, the air resistance will consequently decline as
well, which means the velocity will decline much smaller. Consequently, the dimpled ball will
have more flight time and fly a much longer distances.

x(m)

Dimpled Ball

Smooth Ball

z(m)

Figure 5 Flight distance of a smooth golf ball and a dimpled golf ball. Initial conditions are
Vx = 40m/s, Vy = 10m/s

Based on the data in previous works [1], we are able to compared the trajectories of a
smooth ball and a dimpled ball by controlling all the parameters the same except their surface
conditions. It is illustrated in Fig. 5 that a dimpled ball flies for a further distance than that of a
smooth ball.

5 Bouncing stage

5.1 Assumptions

After hitting the ground, the golf ball will bounce for several times and then roll for a certain
distance. The total distance that the ball moves in this stage is largely dependent on landing
velocity, spin and characteristic of the ground. The following assumptions are made to simplify
flight model as follows:

• Major part of the mechanical energy is dissipated during the first bounce.

• The frictional force is so great that the velocity of contact point falls to zero when leaving
the green, i.e. a state of pure rolling after the collision with the ground.

• The sidespin will not effect the motion parallel to the ground.

• The coefficient of restitution and the coefficient of friction that we cited from literatures
are reasonable.
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5.2 Theoretical Analysis

v

v

v

ωd

ωd

v

vv

Before After

v

(a)

(b)

Figure 6 (a) The angular velocity and the velocity components of the golf ball before and after
the bounce. The two components of landing velocity are defined as v‖ and v⊥, and the two
components of rebound velocity are defined as v′

‖ and v′

⊥. (b) Illustration of the trajectory of
bouncing and rolling when v′

‖ is negative.

The landing velocity is decomposed into the horizontal component v‖ and vertical compo-
nent v⊥ in order to divide the oblique impact into two kinds of interactions (the direct impact
normal to the surface, and the interaction tangential to the surface). Define v′

‖ and v′

⊥ as the
velocity after the first rebound, and Lb and Lr as bounce length and roll distance respective-
ly. Since the frictional torque does not do any work to the system, the conservation of angular
momentum before and after each single bounds yields

mRv‖ − Iωr = mRv
′

‖ + Iω
′

r (10)

where ω′
r = −v′

‖/R. Therefore, the rebound velocities and the angular velocity are given by
v

′

⊥ = e | v⊥ |,

v
′

‖ =

(
5

7

)
v‖ −

(
2

7

)
Rωr

(11)

We can see that ωr contributes to the the change of v‖ after every bounce. But the energy is
largely dissipated during the first bounce and ω′

r becomes small. It is assumed that the horizontal
velocity is constant after the first bounce, i.e. v′

‖.
The coefficient of restitution e between a golf ball and the ground has been measured by

Penner[6]. It was found that the value of e decreased with increasing impact speed with the
following function providing a good fit to the data (see in appendix C):
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{
e = 0.510− 0.0375 | v⊥ | +0.000903 | v⊥ |2 when | v⊥ |≤ 20m/s

e = 0.120 when | v⊥ |> 20m/s
(12)

It has been argued that the coefficient of restitution with larger impact speed is smaller.
Hence the coefficient of restitution, which is the ratio of impulse of restitution to impulse of
compression, is little. In spite of hitting the green with high speed, the vertical velocity will
drastically decrease during the first bounce. From the literature we found, the landing velocity
for a typical drive ranges from 26.8m/s to 35m/s. Furthermore,the sidespin will contribute to
the deformation of the turf. Consequently e becomes smaller. Therefore, the vertical velocity
of first rebound can be expressed as

v
′

⊥ = 0.12 | v⊥ | (13)

After the first bounce, v′

‖ will be relatively small, in which case e will be approximately equal
to 0.5 for the second and subsequent bounces on green.

The only difference between discussed case and Daish’s case is that the golf ball have not
only backspin ωr but also sidespin ωs. In the process of collision, the sidespin of the ball fall to
zero due to the great friction and it will not contribute to the change of v‖. Hence,the model of
the run is practical[6]. Ignoring the air drag, it is a oblique projectile motion with initial velocity
v

′

‖ and v′

⊥ , thus the first bounce length will be given by:

Lb1 =
2v

′

‖v
′

⊥

g
(14)

And the subsequent bounce length is a geometric progression with common ratio e(e = 0.5).
Therefore,the total bounce length is:

Lb = (
n∑
i=0

ei)Lb1 = 2Lb1 (15)

After the bound phase, the golf ball will be rolling along the green with a initial speed of v′

⊥ and
the acceleration −µg, where µ is the coefficient of friction. The roll distance will be given by

Lr =
v

′2
‖

2µg
(16)

µ is set to be 1.0, which has a good agreement with the experiment. Finally, the run of the golf
will be given by L = Lb + Lr.

In the problem, the backspin ωr is too large that v′

‖ can be negative, which can be seen in
the formula. Fig. 6(b) shows the effect backspin has on the run of the a golf ball when v′

‖ is
negative. When simulating the problem,let

vz = v‖

v2x + v2y = v2‖

ω2
x + ω2

y = ω2
s

(17)
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As discussed above, ωx will effect the v′
yand the ωy will effect the v′

x. then

v
′

z = 0.12vz

v
′

x =

(
5

7

)
vx −

(
2

7

)
R | ωy |

v
′

y =

(
5

7

)
vy −

(
2

7

)
R | ωx |

(18)

Therefore, the bounce lengths, or alternatively, the displacements after the Bouncing Stage, are
∆x =

4v
′
zv

′
x

g
+

v
′2
x

2µg

∆y =
4v

′
zv

′
y

g
+

v
′2
y

2µg

(19)

6 Results

6.1 Parametric space and feasible regions

A feasible trajectory must go around the tree (cylinder) and land in the given circular region.
By calculating different trajectories with all possible initial conditions, all feasible parameters
could be obtained. In Fig. 7(b), we calculate the feasible region with initial conditions −π/2 <
γ < 0,0 < ψ < π/2,Vclub = 58m/s,θ = π/8.

Figure 7 All feasible trajectory. (Red line represents the free flight stage. Blue line represents
the bouncing stage.Light green region represents tree.Dark green region represents green.)

Still and all, a golfer cannot get enough information to make a successful shoot using results
in the sections above. He cares more about proper angel and power that results in a feasible
trajectory.
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We assume that a well-trained golfer can control the power used in every shoot very pre-
cisely, and that Vclud does not change in our problem. Once a specific type of club is chose,
the loft angel is then fixed (which means θ is constant). We consider that, golfer can control
the drift angel θ and azimuth angel γ to shoot a proper trajectories. By scanning the parametric
space, the Fig. 7 demonstrates the feasible regions have central symmetry in parametric space.
By choosing parameters in these regions, the golfer will ultimately lead to a successful shoot.

6.2 Margin values of the system

v=30m/s v=35m/s v=40m/s

v=45m/s

π/6

0

-π/3 -π/6

0

π/6

π/6

0

-π/3 -π/3-π/6 -π/6

v=50m/s v=55m/s

v=60m/s v=65m/s v=70m/s

Figure 8 Feasible regions in parametric space. (The red region represents desirable parameters.)

One cannot deny the fact that, no matter how well-trained a golfer is, errors do occur when
his/her controls a club and make a shot. Fig. 8 shows the feasible region is quite narrow in
the parametric space. Under these circumstances, the golfers have to make their controls so
precise — the precision that sometimes even impossible achieve — to lead to a desirable shot.
Therefore, we want to the make problem easier for golfer to shoot successfully. To measure the
’difficulty’ golfers have to face with, we define the margin value of the system (which is the
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root-mean square of the feasible region)

M =

√∫
FeasibleRegion

((ψ − ψ)2 + (γ − γ)2)dτ

S
(20)

Qualitatively speaking, the larger the margin value becomes, the large the feasible regions would
be. Consequently, albeit some deviations might exist in golfers’ controls, they are still able to
accomplish the shot and lead the ball to go around the tree. Fig. 9 shows that, the margin value
under condition of 50 < Vclub < 70 is much larger than that under other conditions. As a
conclusion, we could determine the most suitable loft angel is around π/8.

Figure 9 The margin value of the system. It can be observed that the margin value reaches the
maximum when the velocity is around 50m/s ∼ 70m/s, within which the golfers’ chances to
successfully accomplish the task is enhanced.

6.3 Extended model
The real condition is much more complex than the parameters considered in theory,and the 

most important one is wind. It’s easy to imagine that, with a side wind making a successful 
shoot becomes easier. Given a wind (speed: 5m/s along y axes) Fig. 10(a) demonstrates a 
fact that one of the feasible region become much larger than the same region in Fig. 10(b), in 
which condition parameters are the same except wind speed.

Fig. 10 shows obviously what influence is caused by wind.

7 Conclusion
As discussed in our article, Magnus force is significant to solve the problem. In the free-

flight bouncing, the Magnus force plays two important roles, one of which caused by backspin
provide the lift force. Another one caused by sidespin drives the ball to fly in a circuitous
trajectory around the tree.
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Figure 10 Feasible regions with wind.

After studying the correlation between feasible trajectories and the way hitting the short, we
can instruct the golfer in the problem how to hit a successful shot. The golfer is suggested to
use the club with the loft angle being 22.5◦, rotate the shaft with the drift angle being around
17band swing in the direction 44◦ away from the tree and at the speed of 60±m/s.

8 Strengths and Weaknesses

8.1 Strengths

• We took all interactions into account including that between ball and club, ball and
ground, ball and air. The result is accurate and convincing.

• Knowing the kind of club, drift angel, azimuthal angel and impact power we could tell
whether the trajectory is proper.

• Using the ψ − γ diagram we gave instructive suggestion about how to make a successful
shoot. By investigating ’Margin Value’, the difficulty of hitting target can be described
qualitatively.

8.2 Weaknesses

Our weaknesses are mainly caused by the rough models we use, especially the shortcomings
and imperfections of our assumptions, which are a little different from the reality.

• We assume the collision between golf ball and golf club is a completely inelastic collision.
Actually, the real situation is imperfect inelastic collision, which will give the ball more
initial velocity during the hit.
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• In the bouncing stage, we assume that the ground is flat. The pressure act on the golf ball
is vertical and the friction is horizontal. In fact, the golf ball will deform the green surface
so that the surface of the ground will not be flat during the collision. This influent on the
bouncing stage can be further discussed.
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Appendix A Matrix Form
Matrix Form: 

MVclubx
0

0

0

0

0

0

0

0

0


= P



Vcfn
Vcfp
Vbfn
Vbfp
ωbf
V ′cfn
V ′cfp
V ′bfn
V ′bfp
ω′bf


(21)

Px :

Py :

Pz :

ωy :

ωz :

Collision :

Collision :

Non− slip :
Non− slip :

Vx :



M cos θ M sin θ m cos θ m sin θ 0 M cosψ M sinψ m cosψ m sinψ 0

0 0 0 0 0 −M sinψ M cosψ −m sinψ m cosψ 0

M sin θ −M cos θ m sin θ −m cos θ 0 0 0 0 0

0 0 0 mR I 0 0 0 0 0

0 0 0 0 0 0 0 0 mR I

1 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 −1 0 0

0 −1 0 1 −R 0 0 0 0 0

0 0 0 0 0 0 −1 0 1 −R
cos θ sin θ cos θ sin θ 0 − cosψ − sinψ − cosψ − sinψ 0


(22)

Row (1)-(3) are the conservations of linear momenta along the normal and parallel direc-
tions. Row (4)-(5) are the conservations of angular momenta. Row (6)-(9) indicate that after
the collision, the loft and the ball share the same speed and direction. The last equation is the
velocity constrain in this coordinate.



Team 108 University Physics Competition Page 18 of 24

Appendix B Mathematica Program

B.1 Start Condition.nb

% This program mainly generates initial data.

ClearAll["Global‘*"];

R = 4.27*10ˆ-2/2;

m = 45.9*10ˆ-3;

M = 0.2;

i = 0.4*45.9*10ˆ-3*4.27*10ˆ-2*4.27*10ˆ-2/4;

c = 0.25;

\[Rho] = 1.29;

A = \[Pi] Rˆ2;

S = 5*10ˆ-5;

g = 9.8;

\[Mu] = 1;

(*

To Calculate the start condition of flying stage using parameters \

controled by golfer.

*)

Matrix = {{M Cos[theta], M Sin[theta], m Cos[theta], m Sin[theta], 0,

M Cos[psi], M Sin[psi], m Cos[psi], m Sin[psi], 0},

{0, 0, 0, 0, 0, -M Sin[psi], M Cos[psi], -m Sin[psi], m Cos[psi],

0},

{M Sin[theta], -M Cos[theta], m Sin[theta], -m Cos[theta], 0, 0, 0,

0, 0, 0},

{0, 0, 0, m R, i, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, m R, i},

{1, 0, -1, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 1, 0, -1, 0, 0},

{0, -1, 0, 1, -R, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, -1, 0, 1, -R},

{Cos[theta], Sin[theta], Cos[theta], Sin[theta],

0, -Cos[psi], -Sin[psi], -Cos[psi], -Sin[psi], 0}};

ans = LinearSolve[Matrix, {M V, 0, 0, 0, 0, 0, 0, 0, 0, 0}];

\[Omega]y[theta_, psi_, V_] :=

Evaluate[Simplify[

ans[[5]], (-\[Pi]/2 <
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psi) && (psi < \[Pi]/2) && (theta < \[Pi]/

2) && (theta > -\[Pi]/2)]];

\[Omega]z[theta_, psi_, V_] :=

Evaluate[-Simplify[

ans[[10]], (-\[Pi]/2 <

psi) && (psi < \[Pi]/2) && (theta < \[Pi]/

2) && (theta > -\[Pi]/2)]];

vx[theta_, psi_, V_] :=

Evaluate[Simplify[

ans[[3]]*Cos[theta] + ans[[4]]*Sin[theta] + ans[[8]]*Cos[psi] +

ans[[9]]*

Sin[psi], (-\[Pi]/2 <

psi) && (psi < \[Pi]/2) && (theta < \[Pi]/

2) && (theta > -\[Pi]/2)]];

vy[theta_, psi_, V_] :=

Evaluate[Simplify[-ans[[8]]*Sin[psi] +

ans[[9]]*

Cos[psi], (-\[Pi]/2 <

psi) && (psi < \[Pi]/2) && (theta < \[Pi]/

2) && (theta > -\[Pi]/2)]];

vz[theta_, psi_, V_] :=

Evaluate[Simplify[

ans[[3]]*Sin[theta] -

ans[[4]]*

Cos[theta], (-\[Pi]/2 <

psi) && (psi < \[Pi]/2) && (theta < \[Pi]/

2) && (theta > -\[Pi]/2)]];

B.2 Possible Track.nb

(*

To Calculate a possible track with start condition.

*)

\[Gamma] = \[Pi]/4

equ = {m x’’[t] == -0.5*

c \[Rho] A Sqrt[(x’[t]ˆ2 + y’[t]ˆ2 + z’[t]ˆ2)] x’[t] +
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S (\[Omega]y[theta, psi, V] z’[t] - \[Omega]z[theta, psi, V] y’[

t]), m y’’[t] == -0.5*

c \[Rho] A Sqrt[(x’[t]ˆ2 + y’[t]ˆ2 + z’[t]ˆ2)] y’[t] +

S (\[Omega]z[theta, psi, V] x’[t]),

m z’’[t] == -0.5*c \[Rho] A Sqrt[(x’[t]ˆ2 + y’[t]ˆ2 + z’[t]ˆ2)]

z’[t] + S (-\[Omega]y[theta, psi, V] x’[t]) - m g, x[0] == 0,

y[0] == 0, z[0] == 0, x’[0] == vx[theta, psi, V],

y’[0] == vy[theta, psi, V], z’[0] == vz[theta, psi, V]};

obs[x_, y_, z_, \[Gamma]_] :=

If[((10 Cos[\[Gamma]] - x)ˆ2 + (10 Sin[\[Gamma]] - y)ˆ2 <=

10) || (z <= 0), True, False];

green[x_, y_, \[Gamma]_] :=

If[((120 Cos[\[Gamma]] - x)ˆ2 + (-120 Sin[\[Gamma]] - y)ˆ2 <= 100),

True, False];

temp = Reap[

NDSolve[equ /. {theta -> \[Pi]/8, psi -> \[Pi]/8, V -> 58}, {x, y,

z}, {t, 0, 80},

Method -> {"EventLocator",

"Event" -> (obs[x[t], y[t], z[t], \[Gamma]]),

"EventAction" :> Sow[{t, x’[t], y’[t], z’[t]}]}]];

trac = temp[[1]];

final = temp[[2]][[1]][[1]][[1]];

vxf = temp[[2]][[1]][[1]][[2]];

vyf = temp[[2]][[1]][[1]][[3]];

vzf = 0.12 temp[[2]][[1]][[1]][[4]];

\[Omega] = \[Omega]y[\[Pi]/6, -\[Pi]/4, 80];

vxfn = 5/7 vxf - 2/7 R \[Omega];

vyfn = 5/7 vyf - 2/7 R \[Omega];

gTrac = ParametricPlot[{Cos[\[Gamma]] x[t] - Sin[\[Gamma]] y[t],

Sin[\[Gamma]] x[t] + Cos[\[Gamma]] y[t]} /. trac, {t, 0, final},

AspectRatio -> Automatic, PlotRange -> {{0, 150}, {-45, 45}},

Frame -> True, PlotStyle -> {Red, Thick},

LabelStyle -> Directive[Thick, Black],

AxesLabel -> {Style["X", 15], Style["Y", 15]}];

ox = (x[final] /. trac)[[1]];

oy = (y[final] /. trac)[[1]];

nx = (x[final] /. trac)[[1]] + 4/g vzf vxfn + vxfnˆ2/(2 \[Mu] g);

ny = (y[final] /. trac)[[1]] + 4/g vzf vyfn + vyfnˆ2/(2 \[Mu] g);

gRoll = Graphics[{Thick, Blue,
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Line[{{Cos[\[Gamma]] ox - Sin[\[Gamma]] oy,

Sin[\[Gamma]] ox + Cos[\[Gamma]] oy}, {Cos[\[Gamma]] nx -

Sin[\[Gamma]] ny, Sin[\[Gamma]] nx + Cos[\[Gamma]] ny}}]}];

Show[gTrac, gTree, gGreen, gTrac, gRoll]

B.3 Feasible Region.nb

(*

Find feasible region in parametric space

*)

Ap = {}; Ag = {};

Do[

Do[

temp = Reap[

NDSolve[equ /. {theta -> \[Pi]/8, V -> 58}, {x, y, z}, {t, 0,

10}, Method -> {"EventLocator",

"Event" -> (obs[x[t], y[t], z[t], \[Gamma]]),

"EventAction" :> Sow[{t, x’[t], y’[t], z’[t]}]}]];

trac = temp[[1]];

(*

The Same code in last paragraph.

...

*)

If[green[nx, ny, \[Gamma]], AppendTo[Ap, psi];

AppendTo[Ag, \[Gamma]]], {\[Gamma], -\[Pi]/2, -\[Pi]/8,

0.02}], {psi, 0, \[Pi]/4, 0.02}]

Show[Graphics[{LightBlue, Rectangle[{0, 0}, {-\[Pi]/2, \[Pi]/2}]},

Axes -> True,

AxesLabel -> {Style["\[Gamma]", 15], Style["\[Psi]", 15]},

AxesStyle -> Directive[Black, 8]],

ListPlot[Transpose[{Ag, Ap}],

PlotRange -> {{0, -\[Pi]/2}, {0, \[Pi]/2}},

PlotMarkers -> Automatic, PlotStyle -> Red],

AxesStyle -> Directive[Black, 12],

Ticks -> {{0, -Pi/4, -Pi/2}, {\[Pi]/2, \[Pi]/4, 0}}]
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B.4 Wind influence.nb

(*

Calculate the track with the influence of wind.

*)

w = -5;

equW = {m x’’[t] == -0.5*

c \[Rho] A Sqrt[(x’[t]ˆ2 + (y’[t] - w)ˆ2 + z’[t]ˆ2)] x’[t] +

S (\[Omega]y[theta, psi, V] z’[t] - \[Omega]z[theta, psi,

V] (y’[t] - w)),

m y’’[t] == -0.5*

c \[Rho] A Sqrt[(x’[t]ˆ2 + (y’[t] - w)ˆ2 + z’[t]ˆ2)] y’[t] +

S (\[Omega]z[theta, psi, V] x’[t]),

m z’’[t] == -0.5*

c \[Rho] A Sqrt[(x’[t]ˆ2 + (y’[t] - w)ˆ2 + z’[t]ˆ2)] z’[t] +

S (-\[Omega]y[theta, psi, V] x’[t]) - m g, x[0] == 0, y[0] == 0,

z[0] == 0, x’[0] == vx[theta, psi, V], y’[0] == vy[theta, psi, V],

z’[0] == vz[theta, psi, V]};

Ap = {}; Ag = {};

Do[

Do[

temp = Reap[

NDSolve[equW /. {theta -> \[Pi]/8, V -> 58}, {x, y, z}, {t, 0,

10}, Method -> {"EventLocator",

"Event" -> (obs[x[t], y[t], z[t], \[Gamma]]),

"EventAction" :> Sow[{t, x’[t], y’[t], z’[t]}]}]];

(*

The Same code in last paragraph.

...

*)

If[green[nx, ny, \[Gamma]], AppendTo[Ap, psi];

AppendTo[Ag, \[Gamma]]], {\[Gamma], -\[Pi]/3, -\[Pi]/10,

0.01}], {psi, \[Pi]/20, \[Pi]/7, 0.01}]

Show[Graphics[{LightBlue, Rectangle[{0, 0}, {-\[Pi]/2, \[Pi]/2}]},

Axes -> True,

AxesLabel -> {Style["\[Gamma]", 15], Style["\[Psi]", 15]},

AxesStyle -> Directive[Black, 8]],

ListPlot[Transpose[{Ag, Ap}],

PlotRange -> {{0, -\[Pi]/2}, {0, \[Pi]/2}},
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PlotMarkers -> Automatic, PlotStyle -> Red],

AxesStyle -> Directive[Black, 12],

Ticks -> {{0, -\[Pi]/4, -\[Pi]/2}, {\[Pi]/2, \[Pi]/4, 0}}]
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Appendix C Mechanical Parameters

Figure 11 Related mechanical parameters obtained by experiments [1, 6].
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