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Abstract

In this paper, extraterrestrial disposal is proposed as a solution to the problem of nuclear residuals.
We start analyzing six different ways of extraterrestrial disposal comparing them, based on their cost
and on their security. After concluding that the optimal disposal method consists on sending the
nuclear waste on an heliocentric orbit we start our modeling work. Both deterministic and stochastic
modeling techniques have been used to solve different stages of the problem. The dangers involved
in leaving the planet with radioactive waste have been analyzed together with the probability of this
dangers to actually become true, comparing debri collision and flight failure using a pertinent figure
of merit. Our model studies two possible heliocentric orbits where the radioactive waste could be
stored and methods for reaching these destinations are proposed. We have studied and compared
the possible dangers that radioactive waste could encounter in their new location (such as unwanted
asteroid collision with unpredictable results) as well as the energetic costs involved in bringing them
there. According to our model, the asteroid belt represents the best option when considering storage or
disposal of radioactive waste during the 250 000 years that it takes for them to become innocuous again.
State of the art techniques have been used to develop our models, like Lagrangian points, libration
oscillations and the Hoffman maneuver. Rkf45 integration has been used to obtain high precision on
our computations, which is important as our system is highly chaotic.
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1 Introduction

Since the construction of the first nuclear plant the disposal of high level nuclear waste (HLW) generated
by nuclear fission has been an important problem. Nowadays the current production rate of HLW is of
27 tons per nuclear plant and year. According to [1] the international consensus about disposal of HLW
is geological disposal. In other words burying the radioactive wastes deeply underground. However, this
disposal methods encounters a variety of inconveniences. Two of this are represented by security and
social and political acceptance. Yucca Mountain and the Waste Isolation Pilot Plant have demonstrated
that researchers cannot guarantee completely environmental isolation for the thousands of years needed
until these wastes cease to be a threat and the well known "Not in my backyard” syndrome constitutes
an example of social nonacceptance towards the present dominant method of radioactive waste disposal.

In this paper we will propose and study a different, more definitive, disposal method; sending the HLW
into outer space.

2 First insights

After a brief research, we have encountered in [2] six different destinations in outer space to be considered.
We will compare this destinations mainly considering the energetic costs necessary in order to reach them
(which will be represented by the values of speed variations that would be necessarily made) and, more
importantly, the safety problems that reaching each destination could carry. It will also be considered as
a slight advantage the possibility of recovering these residuals in case we find a way to use them.

2.1 High Earth orbit

The first option would be to keep the HLW in the terrestrial orbit. The main advantage of this method is
its low expense (according to NASA studies it would require a variation in speed of only around 4 km/s
when you are above the Shuttle orbit, at 297 km from Earth surface). Another small advantage consists
in the relatively easy retrieval of the HLW in a later time if we were to find a way to productively use this
wastes.

On the other hand, this location supposes a great danger. In fact, a periodic storage of nuclear waste in
Earth’s orbit would greatly increase the transit in the already cluttered Earth orbital space which would
difficult later space expeditions. More importantly, plutonium and other radioactive wastes that we would
like to get rid of are not deemed to be considered safe again until 250 000 years [2] have passed. Since
it is highly unlikely that a waste canister can be constructed that will last for the required 250 000 years
this option supposes a great danger for humanity. The canisters will probably erode with time under the
influence of internal radiation as well as space encountered radiation, and the solar wind could drive the
small particles back into the Earth’s atmosphere contaminating it. Due to this fact, we considered this
option a non desirable one.
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2.2 Lunar orbit

This option demands a higher energetic cost than the later. It supposes, in fact, a speed variation of 4250
m/s above Shutter orbit in order to reach a circular lunar orbit of radius 21700 km. The transportation
time would be higher that that of the previous option (6 days compared to the 18 hours) but it still
wouldn’t be very high (which implies lesser chances of accidents). A high improvement of this option
from the later would be that once reached the lunar orbit, even if the canisters were to malfunction due
to prolonged radiation exposure the radioactive, particles able to escape would mostly remain in Moon’s
orbit. Furthermore, due to higher distances, the few particles that would escape Moon’s orbit would
disperse leaving only a very small portion reaching the Earth. This could seem a small problem concern
at first. However, considering the huge amounts of HLW that we are planning to store, this small portion
could represent an excessively large quantity. Another counterpart is that this option (as every option
involving leaving Earth orbit) implies, as explained in [2], the need of a non perfect waste-retrieval plan
to be executed in case of failure on the transportation process.

2.3 Solar system escape

This option presents the advantage that the disposal of the waste would be definitive with no chance of
going back to Earth. Furthermore, the transportation method would be relatively simple implying a single
burn of the propulsion system. This fact would allow us to operate with easily reusable ground based
propulsion systems such as electromagnetic launchers, mass drivers, gas guns and laser propulsion which,
even if they are currently not very efficient due to the high development and construction costs, would
in the long term and after more investigation probably turn out to be proven cheaper. Unfortunately we
cannot ignore the current inefficiency of this methods so we cannot consider this later argument as an
advantage. A counterpart to this method is the huge energy cost that it implies. In fact, we can use a
simplified model where the only relevant gravitational fields at the earth surface are the ones from the
earth and from the sun. The condition that the system must have is that the total energy must be zero,
since we want to put that body at the infinite and still.

1 2 GMg GMr Mg My m
-V, = —— e = 1[2 — 4+ — | =4 1— 1
3% = Ta t R v \/G<AU+RT 35912 (1)

where G = 6.67 - 101! 1}1‘;22 is the universal gravitational constant Mg = 1.99 - 103° kg is the Sun’s mass
and TAU = 1.50 - 10! is the international astronomical unit.! If given that any object in Earth has a

mean orbital velocity of vpmeqn = 29780 km/s we will need to give our satellite a speed variation of

AV = Ve — Umean = 13811m/s (2)

According to calculations made in [4] this needed velocity variation can be reduced to 7010 m/s using
Jupiter swing-by to escape the solar system. Either way the needed velocity variation is much higher that
the one needed for the methods exposed up until now so we will consider this option as unpractical until
there have been improvements in ground based propulsion systems.

I This and other planetary constants have been extracted from [3].
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2.4 Solar impact

Despite the fact that this option seems the best one in a first approach, taking the rocket to the sun is
not an efficient option. The main reason is that it is need to decelerate the rocket into a lower speed in
order to go to the sun. Firstly, it is possible to fully decelerate the rocket and then it would do a Sun dive.
However, this option requires a speed variation equal to the orbital velocity of the Earth vy = 30.03km/s.
On the other side, there is a more efficient method, describing an elliptical orbit with a perihelion at the
Solar surface and an aphelion at the Earth surface. The speed increase of that path is given by the energy
equation (3) and the semi-major axis for that specific orbit 4, where the sun radius is R, = 6.957 - 10® m:

GM GM

- 2_ _ "7
E/m= UA +1/2v o (3)
o — UA;RS (4)

Rearranging both equations and keeping in mind that the velocity in the equation is the orbital velocity
plus the speed increase that we need to calculate, we get to the final equation:

1 1
Av:\/2GM<2UA—RS+UA)—UT (5)

Introducing the values we get that it is need an spread orbit of Av=—27.164 km/s. The negative tells us
that we need to decelerate in order to get into the sun. Both results require a high speed increase, that’s
why a solar impact it’s not the most efficient idea. Furthermore, a solar impact is a non-return action, so
the waste would never return to Earth in the hypothetical case that we found a way to use it.

2.5 Lunar soft landing

The process followed in order to safely land the HLW very much resembles the one followed to in orbit
around the moon. However, it supposes higher energetic cost since it is necessary to decrease the Orbit
Transfer Vehicle (OTV) speed in order to safely land on the Moon. It is also needed to avoid the dispersion
on the Moon surface of the nuclear waste which would difficult the explorations of the Moon surface.
Moreover, the building of such an OTV would increase the expedition economical expense. Despite its
higher energetic cost respect the moon orbiting option, the energetic cost presented by landing the HLW
on the Moon surface would, according to [2], be lower that that Solar system escape and solar impact
options.

A discrete advantage presented by this option is that the HLW would be reachable and could be extracted
in case we should find a way to make it useful in the future. Another advantage is that, even if the
canisters should be rendered useless due to prolonged radiation exposure the wastes would not contaminate
the Earth since they would remain in the Moon surface due to gravity attraction. In fact the only
way that the radioactive waste should return to Earth without active human intervention would be as a
Moon meteorite which, even if deemed improbable (there are only 118 registered moon meteorites) it still
represents a possibility which should be considered. Another disadvantage of this option is that using the
Moon to store all our nuclear waste would difficult the Moon’s surface exploration which could be somehow
attenuated placing the nuclear residuals in a place of low exploration interest.
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2.6 Heliocentric orbit

This last option represents, like the Solar system escape and the Solar impact options, a definitive way
to dispose of the nuclear waste. Compared with the lunar soft landing option, the possibility of retrieval
of the nuclear waste in this option is harder due to the greater distances involved. Despite this moderate
disadvantage this option presents many positive facts. The first is that the even if difficult, the retrieval
is not impossible given that the waste would remain in a known stable orbit inside the solar system. An
advantage worth of notice of this option consists in the fact that, in this kind of expeditions, escape from
Earth would occur within the first 1700 s according to [2]. Besides, if a failure occurred after this brief
period and before reaching the new orbit, the nuclear canister would remain in a heliocentric orbit that
would have a probability of re-encountering Earth within 250 000 years (the period of time during with
the nuclear waste would be dangerous) of only 0.1%. Flying one recovery mission would reduce further
this low probability making it irrelevant. The only factor that could really be considered a disadvantage
for this option is the high energetic expense required to send the wastes at a far enough distance from
Earth to make the HLW take a heliocentric orbit, completely separated from that of Earth. This high
cost is however lower than the one necessary to achieve Solar impact or Solar system escape and could be
further diminished using planetary assisted flights.

2.7 Comparison of destinations

From the the advantages and disadvantages exposed above we have reached the conclusion that the op-
timal destination for our nuclear wastes is an heliocentric orbit. That is why it has the important ad-
vantage of being a definitive disposal method of nuclear waste with a low possibility of waste going back
to Earth. Moreover, is the cheapest and the safest way from the ones studied. The lunar soft land-
ing option almost reaches this parameter, but building an OTV able to soft landing Moon requires a
higher economical expense. Furthermore, the risk of meteorites impacting the Moon and sending the
nuclear waste back to Earth as nuclear meteorite is also higher than the probability to bring the waste
back from a different heliocentric orbit. The only doubt remains in deciding which heliocentric orbit
should be used to store the HLW. The criterion to use is the stability. It is obvious observing figure
1 that the most stables orbits of the inner solar system are the ones represented by the asteroid belt
and the orbits of the Lagrange points of Jupiter. The proof is simple, there are plenty of asteroids
there. In our model we will study the stability of this orbit and methods used to reach this orbits.

|, Hildas

"Trojans’

® Jupiter

"Greeks"

Figure 1: Inner Solar system.
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3 Modeling the disposal of the residuals in space

3.1 General assumptions

In this section we will discuss the main assumptions that we will consider when modeling the motion of a
rocket:

e We will use Newton’s law of universal gravitation to describe the interaction of the planets with the
rocket.

e The motion will be planar: we neglect the possible variations in the axis perpendicular to the ecliptic.

e The Sun will be in a fixed position and the planets will go around the Sun in a circular orbit. This
assumption is justified due to the fact that the eccentricity of the orbits of the planets considered in
the model is really low.

e We will not consider the gravitational field of Mercury, Venus, Saturn, Uranus and Neptune.

e When we kick the rocket, we can give an instantaneous increase of speed (we neglect the acceleration
time with respect to the time scale of the problem).

3.2 Abandoning Earth

The biggest dangers of space travel are concentrated in the moments of leaving and coming back to Earth.
It is therefore important to consider the problems involved in exiting our planet and which is the probability
of an uncontrolled incident happening.

3.2.1 Probability of disaster

In this section we will compute through a simple model the probability of collision with a debri (space
junk orbiting the earth at low earth orbit). Since any object abandoning Earth needs to deal with debris
surrounding Earth this is a problem worth considering. The number of debris is constantly increasing, and
in future time will become a big problem (see [5]). In our model we will consider a uniform distribution
of debris in the lower earth orbit. We will also assume that the rocket will be traveling through the lower
earth orbit at constant speed and through a radial line, and that the debris are orbiting at a constant an
equal speed. Although this assumptions are not completely realistic, as we are doing a stochastic model
we can just use the average values.

To compute the probability of collision, we are going to consider the problem from the reference system of
a debri. On this system, the debri is still and it will see the rocket moving in a non-radial path. That is, if
the debri have velocity Ugepri, it will see the rocket moving at velocity Uy,ocket — Udebri, PEING Urocket the ve-
locity of the rocket in the Earth reference system. That is what we see in figure 2, where § = arctan -Ydebri 2

Vrocket

Of course, the rocket has a cross-sectional area that will provide the possibility of colliding with a debri.
As the rocket is much bigger, we will assume the debris to be point-sized. As the rocket has a cross section
and travels through the low earth orbit, its path will have an effective volume, being it the length of the

2We write v to express the norm of ¥
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Figure 2: Path of the rocket from a debri reference system.

path times the area of the cross-section. Now, the probability that it collides with a certain debri is the
probability of the debri being in the effective volume of the path. Using basic trigonometry, one can easily
work out the length of the path, being it (R0 — Rimin)/ sin 6. This means that the probability of colliding

with a certain debri is:
0(Rmaz — Rimin)/ sin (0)

p= — (6)
(RS, — R?

mazx mzn)

being o the cross section of the rocket. Finally, the probability of colliding with n debris can be easily
computed as
Ptotal = 1-—- (1 - p)n (7)

where n is the number of debris. Using the values found in [5] and average speed of rockets at the lower
Earth orbits, one obtains
Drotal = 2.02-1077 (8)

we have set Rpgz ~ 2000 km, Ryin ~ 300 km, n ~ 1.4-10%, 0 ~ 782 m?, vgepri ~ SkTm and Vyocket ~ SkTm.

This result means that the collision probability is currently extremely low and there is no actual danger.
However, our model is slightly optimistic, as it considers the debris point-sized. Moreover, we should
evaluate our model in the launching time, as the number of debris is constantly increasing.

Furthermore, we must consider the fact that there are launching failures can happen. Using the database
from 1994 into 2014 showed in [6], we estimate that the probability of a launch failure is 0.79%. This is
not a low probability, so before implementing the waste extraterrestrial disposal it is necessary to reduce
the launch failure.

3.2.2 Consequences of a disaster

It is very important to take care of the radioactive residual storage. In case of collision. It is extremely
important to have a container with a high melting point, so that the nuclear waste does not get scattered
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over the Earth surface. Here we have an illustrative example of what happens when there is a collision
with a debris and all nuclear waste gets scattered:

We can imagine our rocket colliding at a height h against a debri and exploding as a result.

Aiming a simple approximation to the real solution, we can separate the total amount of particles in
two groups. The first one we will continue having a high velocity and we will consider that they will leave
the Earth and forget about them. For the second group we will optimistically consider that will have its
up momentum compensated by the explosion force being therefore left with a 0 radial speed but thrown
like a Gaussian distribution (9) in every other direction. We know that the second group must be much
lower in number than the first one due to the linear moment conservation. However, that smaller amount
will still be significantly dangerous for the earth-livings. In real life, this division is not continuous, but
for the approximation that we look for is perfect.

Therefore, we will look for a measure of the dispersion of that second group over the Earth Surface. Let
us consider the x Cartesian coordinates of the velocity, being the z coordinate the height. The distribution
of velocities will be the following:

1 i
202 (9)

p(vz) > 27T6
The explosion shock wave that will push all particles in every direction is just a pressure wave, just as
the sound waves (see [7]). For this reason, the shock wave will push the particles at the speed of sound
vs = 342.3m/s. Therefore, the estimated value for average v, is 0.That means that 68.27% of the parti-
cles will have a speed € [—o, 0] If we choose 0 = 300m/s we get that 68.27% of particles have a speed
€ [—300, 300]m /s, so with this sigma we cover all the range of velocity and we will have a complete dis-
persion.

For the remaining particles in the Earth, (v) = 0, we get that the average time to get from the height of

the particles (h) to the Earth surface is (t) = w@, where we have estimated that gravity is constant
at this height, a reasonable approximation because the actual value of the gravity in the low earth orbit
is ~ 7.5m/s?. Assuming there is no wind that changes our earth-particles speed, we change the density
probability for a lateral dispersion density (x coordinates of the particles) using x = v,t, where

z\ dvy 1 a2
— ) —= = e 202t 10
t) dz toV 2T (10)

The dispersion approximation gives us a new dispersion for a given time

p(z) =p (Uac =

(1)

According to [5], the average height of the low earth orbit is (h) = 1150km, so the estimated dispersion at
the earth surface is
o, ~ 145km

As a first approximation, this estimation gives as the idea that a rocket collision with the debris at a
1150 km, will scatter more than 95.57 percent of the remaining radioactive particles over a surface of
Saispersion = m(20)% &~ 264000km?, which approximately the area of Colorado. The affected area by
95.45% will become our Figure of merit. We take all the particles in the 20 interval, because we consider
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that particles that have more speed than the 95.45% of them are negligible.

However, we have not considered the effects of wind and radioactive ashes that would spread even more
the radioactive particles.

As we have explained before, the probability of a launch failure is 0.79%, we can also make the same wild
guess as before and obtain the affected area in case of launch disaster. As the process is the same, we can
use the equation 11. A good example of a launch disaster is Space shuttle Challenger disaster from 1986,
that exploded at an altitude of 15 km. Using this altitude as the average altitude of disaster, it is obtained
that the surface of dispersion the 95.57% of radioactive particles from a launch disaster is

Sdispersion ~ 346. 16km2

To sum up, we have two possible accident causes, one less probable but more lethal, and the other more
possible but less dangerous and still fatal. Both must be taken in care, but we can make a wild guess to
know which is the most dangerous. The figure of merit to determine which one is the most dangerous that
we have taken is effective area destructed per launch (Sers). This magnitude is described by

Seff = PrObabﬂitYdisaster ' Sdispersion (12)

Applying the values of each possible accident cause, we get that the effective areas are Sjaunch = 2.7347km?
ans Sqebris = 0.0533km?. This magnitudes gives as the theoretical area that it is sprayed by 95.45% of
the radioactive particles in each rocket launch. As a result, we can see that as a first approximation, the
launch disaster is 51.28 times worse than the debris collision. However, both disasters would be lethal and
devastating.

3.3 Putting the rocket in a stable orbit
3.3.1 Aiming at the Lagrangian points

In this section, we will develop and implement a model to put the rocket carrying the nuclear waste in a very
stable orbit. The main focus will be on putting the rocket on a Lagrangian point of the Jupiter-Sun system.

First of all let us talk about what is a Lagrangian point. The Lagrangian points are the critical points of a
star-planet dynamical system. Although the Lagrangian points are unstable critical points, as seen in [8],
the fact that they are moving in a non-inertial reference frame makes some of them stable. Actually the
L, and L5 Lagrangian points are effectively stable when considering that they are a non-inertial system.
As explained in [8], when a point in L, starts moving away from equilibrium, the Coriolis force takes it
back to Ly. This is the reason of the existence of Trojans [9], being objects orbiting the L4 and Ly points,
which are in the asteroid belt. One can see the geometry of the problem in figure 3.

Our aim will be to put the rocket on a Lagrangian point, as other locations are not safe due to the fact
that the N-body problem is chaotic. The point is that this is the most stable that we can aim from a
physical viewpoint. L4 and Ls guarantee equilibrium if we just consider the sun and Jupiter, and not all
the planets. However, every other planet field will just add a correction to the path that will be negligible.
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Figure 3: Critical points of the earth-sun dynamical system.

In this model we will assume that Jupiter is orbiting around the sun in a circular path. This is well
justified, as the eccentricity of Jupiter is almost 0 (it is 0.048498). We will also consider the Earth going in
a circular orbit, is also well justified (Earth’s eccentricity is 0.0167). The gravitational bodies that affect
the path of the rocket will be Jupiter, the Earth and the Sun. Our model will assume planar motion of
all the bodies.

The most efficient way to kick a rocket is tangential to its velocity. All other kicks will be less energetically
efficient. In rocket science, this kind of techniques are known as Hoffman’s maneuvers.

We will divide our problem in a two-step kick of the rocket. First of all, we will kick it to go out from
Earth and approaching Jupiter. Both in this and the following methods, our initial conditions will be at
a distance of 10000 from the center of the Earth. Secondly, when we are close to Jupiter’s orbit, we will
push the satellite to obtain the same speed as Jupiter. In order to do this, we will integrate the motion
equations of the rocket and impose that after the second kick it will be moving on L, in the sun reference
frame. Now, let us consider the geometric situation shown in figure 4.

Earth 5 Sun

Jupiter

Figure 4: Geometric situation.
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Without loss of generality, we can assume the Earth to be in the position (—AU,0), where AU is the
distance from Earth to Sun (astronomic unit). We launch the rocket with a speed (0,v1), being v; < 0
such that it intersects tangentially the path of Jupiter at the position 7y = (5.2AU, 0) (the radius of Jupiter
path is 5.2AU). The initial angle of Jupiter and the z axis must be 6 such that when the rocket is in
position 7, Jupiter is in the following position:

= (Sl i) (49)

This is due to the fact the L4 point is at an angle of 60 degrees of the Jupiter. Theoretically, L4 is not
in the path of Jupiter, as by definition the triangle between the Sun, L, and Jupiter is equilateral. If we
assume a circular orbit of Jupiter, Ly gets to its path.

At that moment, we will do a second push of velocity (0,v2) such that the final velocity is the one that
Jupiter would have at 7.

Using this conditions, we have that setting v; = —12.4%7 Vg = 5.6%‘“, 0 = —145.15°, we can get to the Ly
point.3 Actually, this strategy is much more energy consuming than throwing it out of the solar system.
However, this strategy provides a possibility to recover the residuals in case of loss. The path of the rocket
in the following 1000 years is shown in figure 5. The motion equations have been integrated using a rkf45

numerical method. This method provides the necessary precision to obtain a realistic simulation.

lel2

0.8

L
-1.0 -0.5 0.0 0.5 10
lel2

Figure 5: Green:Path of Jupiter. Blue: Path of the Earth. Red: Path of the rocket. The sun is in the
origin and the units are meters

3.3.2 Modeling the chances of collisions with Trojans

In this section, we will develop a model to compute the probabilities of collisions with Trojans once we
have set our rocket in L4. This has to be considered, as a collision could set the rocket out of Ly and
a chaotic motion could bring it to the Earth. To develop this model, we will consider libration (see [10]
and [11]), which is the process of angular oscillations of the Trojans of Jupiter. That is, the angle between
Jupiter and a certain Trojan is not constant as time evolves. As [11] claims, the oscillations have an

3This parametrization of 6 is equivalent to saying that the angle between the Earth and Jupiter is 35° and that the Earth
path is currently following Jupiter’s. It is not hard to find a position in the following years where this is satisfied.
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average period around 150 years. We will consider the problem from the rocket reference frame. Let us
put our three-dimensional axes such that x is parallel to the speed of the rocket. As the period of the
oscillations of every Trojan is about 7' = 150 years, every Trojan will cross the x = 0 plane about one
time every T/2 years.* After a time ¢, the number of Trojans that will have crossed the x = 0 plane will
be, on average, about %, where n is the number of Jupiter Trojans.

The probability of a collision when a Trojan crosses the x = 0 plane will be proportional to the cross-
section of the Trojan and inversely proportional to the total area of the Trojan orbits. This assumption
is justified due to the fact that the area of a Trojan is much bigger than the area of the rocket, so we can
consider the rocket punctual. For this reason, the probability of a collision after a time ¢ is given by:

2nt o
T TotalArea

where ¢ is the average cross-section of a Trojan. If we compute this probability with ¢ ~ 2.5 - 10° years,
which is enough time for the Plutonium-239 to decay at its most. Using the data provided by [12], we set
o ~ 1km?, TotalArea~ 0.252AU%, n ~ 108, and T ~ 150, our probability becomes P ~ 2.4-1075. As this
probability is really low, one can assume that a collision is not likely to happen and the Ly and L5 points
are safe points to aim.

P(t) = (13)

3.3.3 Aiming at the asteroid belt

In this section we analyze how a to put a rocket that carries the residuals in the asteroid belt. We will
use the same assumptions that in the other model, but we will consider the field of Mars at the rocket
position, as Mars’ distance to the asteroid belt is low enough. The reason to put it in the asteroid belt
is due to the fact that some regions of the asteroid belt are very stable regions. As seen in 6, the regions
with higher density of asteroids are the ones which are more stable. On the other hand, the Kirkwood
gaps are highly unstable regions.

Again, our aim is to put our rocket in the asteroid belt with a two-step acceleration using the Hoffman
maneuver, but now we need to get a semi-major axis in the proper range, considering 6. In this case, we
achieve it using an initial speed of 41km/s. Of course, as the Earth speed from the sun frame reference is
already 29.8km/s, we only need to give 11.22km/s to the rocket, if we throw tangentially. At the second
acceleration, we need to use a propulsion of 2km/s. Using this accelerations one can aim the asteroid belt,
and the motion of the bodies are shown in figure 7. Finally, we can compute the semi-major axis, and the
result is 2.25 AU. As shown in figure 6, it is a considerably stable zone.

3.3.4 Modeling the chances of collisions with asteroids in the asteroid belt

After putting the rocket in the asteroid belt, we must analyze the safety of that path. As an assumption,
we will only take as relevant the collisions with objects of more than 10 km of radius, which are the only
ones that are able to give the rocket such a linear moment that it changes its path dramatically, starting
a chaotic motion. According to [13], there is a collision of a 10 km radius approximately once every 107

4In a T period, it turns around doing a ”lap” and actually crosses the £ = 0 plane two times. For this reason, it crosses
one time every T' years.
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Figure 6: Source: Wikipedia commons

years, and the numbers of objects with that radius is 10%.

As this is the only data that we have, we will do a modeling trick to obtain the probability of the collision
of the rocket with an asteroid. Let m = 10* be the total amount of asteroids. We know that a collision
takes place every t = 107 years. That is, the average time that we have to wait for a collision taking place
is t. Now let us consider the rocket-asteroids system. We will compute which is the average time that we
have to wait for a collision taking place with the rocket.

Let us assume that a collision takes place between two bodies of the system. There are an amount of
m(m + 1)/2 possible pairs of bodies.> Moreover, there m of them involve the rocket. For this reason, the
probability of this collision involving the rocket is W = miﬂ ~ % From this we conclude that the

average time that we have to wait for a collision taking place with the rocket is %”

We can model the probability distribution of the collisions of the rocket through time with an exponen-
tial distribution. This assumption is very natural, as the probabilities of collisions during disjoint time
intervals are independent. Moreover, one has that the probability distribution will be continuous. With
this two hypothesis, one can prove mathematically that the probability distribution will be an exponential

distance. If we use an exponential model of parameter A, we have that its expected value is %

Let us join the derivations worked out in the last paragraphs: the expectation value of an exponential

distribution is %, which is the same as %” (this is the average time that we have to wait for the rocket to
collide!). We can therefore compute A = % ~ 5- 10!, which units are year—!. Now, we will compute the

probability that the rocket collides with one of the asteroids in the lifetime of the radioactive particles. As
in the other sections, we will set the particles extinguished when T = 2.5 - 10° years. As the probability

5The system has m + 1 bodies, as the rocket is one of them. However, this is not important, as m ~m + 1 ~ 10%.
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lell

Figure 7: Green: Path of Jupiter. Blue: Path of the Earth. Yellow: Path of Mars. Red: Path of the
rocket. The sun is in the origin and the units are meters.

distribution is exponential, one has the probability of having collided at time T is
PM)=1-e? M =1—¢m" (14)
Giving values to our parameters, we have P(2.5-106) =1 — =510 ~ 5.1075. Again, the probability is

of the order of 1076, For this reason, we can conclude that the orbit is actually safe.

3.3.5 Comparing models

All the models made before have some pros and cons. We will compare them taking the increase of velocity
that we must give to the rocket as the figure of merit. Therefore, we provide a comparison of the methods
considering different aims:

’ Objective | First increase (m/s) | Second increase (m/s) | Total increase (m/s) | Restore |
Out Solar System 13811 0 13811 X
Ly Ly 12400 5600 17000 v
Asteroid belt 11220 2000 13220 v

Table 1: Comparison of the different methods. Restore means the possibility of recovering the rocket from
its orbit in a future time.
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4 Strengths and weaknesses

The strengths of our models are the following:

e Our models are mass independent, which simplify the models extensively, being the assumptions
realistic enough.

o We take into account a large variety of methods of extraterrestrial waste disposal and select the most
reasonable one (sending the nuclear waste to an heliocentric orbit) from within them.

e Our models have the discrete advantage, with respect to the naive strategy of throwing the residuals
away from our galaxy, that there exists the possibility (even if narrow) of waste retrieval. This
advantage would become a major one if it was to be found a method to recycle the nuclear waste.

e We use the Hoffman maneuver in order to obtain an optimal usage of our energy.

e We consider and model many problems that could happen in the disposal of the residuals, comparing
the danger of them by using an appropriate figures of merit.

The weaknesses of our models are the following:

e The motion of the celestial bodies is assumed to be circular. More realistic simulations could be
carried away solving the differential equations of motion for all the bodies and not just for the
rocket.

e The energies that we need to supply to our rocket are of the same order of magnitude as the ones
that we need to give in order to escape the solar system, so our method does not show a significant
improvement in energy expense with respect to the naive strategy. We could probably improve this
fact by performing gravity assistance maneuver.
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5 Conclusions

The studies made on safety and energy costs for sending nuclear waste have shown us that the best possible
option is that of sending the wastes on an heliocentric orbit. Energetically is the optimal one and it is in
a safe storage location (unlike a High Earth orbit or a Lunar orbit).

Another remarkable conclusion is that it is very important to make sure that the waste would be able
to abandon safely Earth’s orbit since an uncontrolled crash in this zone would be fatal. It would be rec-
ommendable, even if economically disadvantageous, to plan waste recovery maneuvers for such situations.
Moreover, we could simulate a crash with mock cargo to prove their efficiency and reassure the public
opinion regarding the dangers of extraterrestrial disposal of nuclear waste.

Our main conclusion is that the most desirable of the two possible heliocentric orbits is the asteroid belt
orbit, due to energetic reasons. An important result that we have run into is that the probability of
accident for the nuclear waste deposited on the asteroid belt is so low as to be considered negligible.

Moreover, aiming to the Sun with a naive strategy requires really high energies. For this reason, if we
want to send it to the Sun we should follow non-trivial strategies.

Finally, it is desirable to comment that one advantage of extraterrestrial nuclear disposal (apart from the
obvious one of getting rid of highly contaminating waste) is that such a program would promote founding
and investigation in space research techniques reactivating an area of science that has seen a drastic re-
duction on its advancing rate since the conclusion of the cold war.
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6 Future Work

It would be interesting in order to make a more complete model to add and improve the following points
in future work

Gravity assisted maneuvers: Planning to take advantage of the gravity field of celestial bodies is a
common practice in space travel. This method could help us to place the radioactive waste on the
asteroid belt with a much lower fuel expense. On the other hand, this maneuver could suppose a
restriction on the day we could extract radioactive waste from Earth since it would be necessary to
wait for the celestial bodies used for the gravity assisted maneuver to be on the necessary location
at the moment of launching. This would suppose a slower disposal of the radioactive material or a
larger fuel expense.

Orbit Transfer Vehicle (OTV) construction: In order to maximize the amount of nuclear waste ex-
tracted from Earth with each rocket launch, it would be necessary to build OTV with great capacity
and high resistance to radiation. Since it would suppose a periodical necessary expense and it would
be very difficult to retrieve the OTV used once it reached the asteroid belt, it would be wise to
investigate a method to produce relatively large amounts of identical OTV. It would be interesting
in this regard to conduct further investigations on reliability of ground based propulsion methods.

Radioactive waste collection: It would be interesting to conduct plans to recollect the radioactive
material storage in stable orbits.

Further improvement of security systems: During our paper we have studied the disasters that
would follow a malfunctioning of the OTV extracting the radioactive waste from Earth. It is neces-
sary to be absolutely certain that no such malfunctioning would occur and have a contingency plan
in case it happened to occur anyway.

Further alternate extraterrestrial disposal methods: It would be interesting to make further in-
vestigations on the variety of extraterrestrial disposal methods such as Lunar hard landing and
heliocentric orbiting with a radius of 0.86U M A as proposed in [2].

Simulation improvement: In order for the made simulations to be actually useful on the planning of
space trips, it would be necessary to make a more complete model. At those scales, it still wouldn’t
be necessary add more planets nor relativistic effects. However, the model should include progressive
accelerations.

Market investigation: It would be an interesting thing to compute how much would suppose to send the
radioactive waste to space. It should be compared to the currently dominant politic of underground
burial of such wastes. It would also be important to consider how such a project would affect the
investigation field of space traveling and what benefits could this bring.
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7 Appendix

Here we attach the codes in python that have been used to perform numerical methods:

import math

import time

import scipy

import scipy.interpolate

from numpy import *

from scipy.linalg import norm
from scipy import array as vector
from matplotlib import pyplot
%matplotlib inline
year=365%3600%24
UA=1.496%10%*11

#Prob of a debri hit
ndebris=1.4%10%*4

Vcoet=8.*10%*3

Vdebri=8.*10%*3

Rmax=2000.*1000

Rmin=300.*1000

CrossSect=pi*8.*8.
Probldebri=CrossSect* (Rmax-Rmin)/sin(arctan(Vcoet/Vdebri) )/ (4*pi/3* (Rmax**3-Rmin**3))
print Probldebri
Probtotal=1-(1-Probldebri)**ndebris
print Probtotal

DistJUP=5.2%UA

Rso0l=6.96%10%%*8
G=6.67*10%*(-11)
Msol=2%10**(30)
Vterrasol=30%10%*3
Rasteroids=2.7*UA

MProbe=10%*4

MJupiter=2*10%*27
T=(4331.572%24%3600) #T jupiter
aJUP=(UA+DistJUP) /2

VJUP=sqrt (2%G*Msolx* (2+xaJUP-UA) / (2¥aJUP*UA) )
Tmart=686.971%24%3600
Mmart=6.4%10%%23
Distmart=230*10%*%*9

def solve(f, tO, tfinal, yO, tol = le-7):
def F(*args):return vector(f(xargs))

t = t0

hmax = (tfinal - t0) / 128.0

h = hmax / 4.0

y = vector(y0) # Column vector (nxl).
out = [(t, list(y))]

#Cash-Karp parameters

a=1[0.0, 0.2, 0.3, 0.6, 1.0, 0.875 ]
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b = [[],

[0.2]1,

[3.0/40.0, 9.0/40.0],

[0.3, -0.9, 1.2],

[-11.0/54.0, 2.5, -70.0/27.0, 35.0/27.0],

[1631.0/55296.0, 175.0/512.0, 575.0/13824.0, 44275.0/110592.0, 253.0/4096.0]]
¢ = [37.0/378.0, 0.0, 250.0/621.0, 125.0/594.0, 0.0, 512.0/1771.0]
dc = [c[0]-2825.0/27648.0, c[1]-0.0, c[2]-18575.0/48384.0,

c[3]1-13525.0/55296.0, c[4]-277.00/14336.0, c[5]-0.25]

while t < tfinal:
if t + h > tfinal:
h = tfinal - t
if t + h <= t:
raise ValueError(’Singularity in ODE’)
# Compute k[i] function values.
k = [None] * 6
k[0] = F(t, y)

k[1] = F(t+a[1]*h, y+h*x(k[0]*b[1][0]))

k[2] = F(t+a[2]*h, y+h*(k[0]*b[2] [0]+k[1]*b[2][1]))

k[3] = F(t+a[3]*h, y+h*(k[0]*b[3][0]+k[1]1*b[3] [1]1+k[2]*b[3][2]))

k[4] = F(t+a[4]*h, y+h*(k[0]*b[4] [0]+k[1]*b[4] [1]+k[2]*b[4] [2]+k([3]*b[4][3]))

k[6] = F(t+a[6]*h, y+h*(k[0]*b[5] [0]+k[1]*b[5] [1]+k[2]*b[5] [2]+k[3]*b[5] [3]+k[4]*b[5][4]1))

# Estimate current error and current maximum error.
E = norm(h*(k[0]*dc[0]+k[1]*dc[1]+k[2]*dc [2]+k [3]*dc [3]+k[4]*dc[4]+k[5]*dc[5]))
Emax = tol*max(norm(y), 1.0)

# Update solution if error is OK.
if E < Emax:
t +=h
y += h*(k[0]*c[0]+k[1]*c[1]+k[2]*c[2]+k [3] *c [3] +k [4] *c [4]+k [6]*c[5])
out += [(t, list(y))]

# Update step size
if E > 0.0:
h = min(hmax, 0.85%h*(Emax/E)**0.2)

return out

Vastnova=4.241e+04

epsilon=-10000

x0=vector ([-UA,epsilon,0,-Vastnoval)

aValue=1/((2/UA)-Vastnova**2/(G*Msol))

semitemps=sqrt (abs (aValue)**3*4*pi**2/(GxMsol)) /2

print aValue

theta=-pi/3-2*pi*semitemps/T

year=24*365%3600

Mterra=6*10*%24

print DistJUP*2xpi/T

def campVectorial(t,x): #t=tempsReal/(4331.572%25%3600)
JupiterPosition=DistJUP*vector([cos(theta+2*pi*t/T),sin(theta+2*pi*t/T)])
sunField=-G*Msol*vector ([x[0],x[1]])/sqrt (x [0]**2+x [1]#%2) **3
JupiterField=-G*MJupiter*vector ([x[0]-JupiterPosition[0],
x[1]-JupiterPosition[1]])/sqrt ((x[0]-JupiterPosition[0])**2+(x[1]-JupiterPosition[1])**2)**3
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terraPosition=UAxvector([-cos(2*pi*t/year),-sin(2*pi*t/year)])

terraField=-G*Mterra*vector ([x[0]-terraPosition[0],
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x[1]-terraPosition[1]])/sqrt ((x[0]-terraPosition[0])**2+(x[1]-terraPosition[1])**2)**3

field=sunField+JupiterField+terraField

if ((x[0]-terraPosition[0])**2+(x[1]-terraPosition[1])**2<0): print

(x[0]-terraPosition[0]) **2+(x[1]-terraPosition[1]) **2
return vector ([x[2],x[3],field[0],field[1]1]);
#solution=solve(campVectorial,0.0,semitemps,x0,1e-10)

#Sortint de la terra
x0=vector ([-UA,-10000000,0,-Vastnoval)

semitemps=semitemps/80
solution=solve (campVectorial,0.0,semitemps,x0,1e-10)

myspeed=sqrt (solution[len(solution)-1] [1] [2] **2+solution[len(solution)-1] [1] [3]**2)

extraSpeed=DistJUP*2*pi/T-myspeed
print myspeed

print DistJUP*2*pi/T

print ’Extraspeed:’

print extraSpeed

print ’theta:’

print theta*180/pi

print ’Initial speed’

print Vastnova

newicons=vector ([solution[len(solution)-1][1][0],solution[len(solution)-1][1]1[1],

solution[len(solution)-1][1] [2],solution[len(solution)-1][1] [3]+extraSpeed])

newsolution=solve (campVectorial,semitemps,1000*year ,newicons,1e-10)

xcomp=zeros (len(solution))
ycomp=zeros (len(solution))
jupx=zeros(len(solution))
jupy=zeros(len(solution))
terrax=zeros(len(solution))
terray=zeros(len(solution))
for i in range(len(solution)):
xcomp [i]=solution[i] [1] [0]
ycomp [i]=solution[i] [1] [1]
jupx [i]1=DistJUP*cos (theta+2*pi*solution[i] [0]/T)
jupy [i1=DistJUP*sin(theta+2*pi*solution[i] [0]1/T)
terrax[i]=-UA*cos(2*pi*solution[i] [0]/(3600%24%365))
terray[i]=UA*sin(2*pi*solution[i] [0]/(3600%24%365))
newxcomp=zeros (len(newsolution))
newycomp=zeros (len(newsolution))
newjupx=zeros (len(newsolution))
newjupy=zeros (len(newsolution))
newterrax=zeros(len(newsolution))
newterray=zeros(len(newsolution))
for i in range(len(newsolution)):
newxcomp [i]=newsolution[i] [1] [0]
newycomp [i]=newsolution[i] [1] [1]
newjupx [1]=DistJUP*cos (theta+2*pi*newsolution[i] [0]/T)
newjupy [i]=DistJUP*sin(theta+2*pi*newsolution[i] [0]/T)
newterrax[i]=-UA*cos(2*pi*newsolution[i] [0]/(3600%*24*365))
newterray [i]=UA*sin(2*pi*newsolution[i] [0]/(3600%24%365))
import matplotlib.pyplot as plt
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plt.plot(xcomp,ycomp, ’r’, newxcomp, newycomp, ’r’, newjupx, newjupy, ’g’, jupx, jupy, ’g’,
terrax, terray, ’b’, newterrax, newterray, ’b’)

#Let us consdierMars!

Vastnova=4.10e+04

theta=pi

Mterra=6*10**24

print DistJUP*2*pi/T

def campVectorial(t,x): #t=tempsReal/(4331.572%25%3600)
JupiterPosition=DistJUP*vector([cos(theta+2*pi*t/T),sin(theta+2*pi*t/T)])
sunField=-G*Msol*vector ([x[0] ,x[1]])/sqrt (x [0]**2+x [1]**2) **3
JupiterField=-G*MJupiter*vector ([x[0]-JupiterPosition[0],
x[1]-JupiterPosition[1]])/sqrt ((x[0]-JupiterPosition[0])**2+(x[1]-JupiterPosition[1])**2)**3
terraPosition=UA*vector([-cos(2*pi*t/year),-sin(2*pix*t/year)])
terraField=-G*Mterra*vector ([x[0]-terraPosition[0],
x[1]-terraPosition[1]])/sqrt((x[0]-terraPosition[0])**2+(x[1]-terraPosition[1])**2)**3
marsPosition=Distmart**vector([cos(theta+2*pi*t/Tmart),sin(thetat+2xpixt/Tmart)])
marsfield=-GxMterra*vector ([x[0]-marsPosition[0],
x[1]-marsPosition[1]])/sqrt ((x[0] -marsPosition[0])**2+(x[1]-marsPosition[1])**2)**3
field=sunField+JupiterField+terraField+marsfield
#if ((x[0]-terraPosition[0])**2+(x[1]-terraPosition[1])**2<0): print

(x[0]-terraPosition[0])**2+(x[1]-terraPosition[1])**2

return vector ([x[2],x[3],field[0],field[1]]);

#solution=solve(campVectorial,0.0,semitemps,x0,1e-10)

#Sortint de la terra

semitemps=1.45*year

x0=vector ([-UA,-10000000,0,-Vastnova]l)
solution=solve (campVectorial,0.0,semitemps,x0,1e-10)

myspeed=sqrt (solution[len(solution)-1] [1] [2]**2+solution[len(solution)-1] [1] [3]**2)
extraSpeed=2000

newicons=vector ([solution[len(solution)-1][1][0],solution[len(solution)-1][1][1],
solution[len(solution)-1][1][2],solution[len(solution)-1][1] [3]+extraSpeed])
newsolution=solve (campVectorial,semitemps,50*year,newicons,1e-10)
xcomp=zeros (len(solution))
ycomp=zeros (len(solution))
jupx=zeros(len(solution))
jupy=zeros(len(solution))
terrax=zeros(len(solution))
terray=zeros(len(solution))
marsx=zeros(len(solution))
marsy=zeros (len(solution))
for i in range(len(solution)):
xcomp [i]=solution[i] [1] [0]
ycomp [i]=solution[i] [1] [1]
jupx [1]=DistJUP*cos(theta+2*pi*solution[i] [0]/T)
jupy [i]1=DistJUP*sin(theta+2*pi*solution[i] [0]/T)
marsx[i]=Distmart*cos(2*pi*solution[i] [0]/Tmart)
marsy[i]=Distmart*sin(2*pi*solution[i] [0]/Tmart)
terrax[i]=-UAxcos(2*pi*solution[i] [0]/(3600%24%365))
terray[i]=UAxsin(2*pi*solution[i] [0]/(3600%24%365))
newxcomp=zeros (len(newsolution))
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newycomp=zeros (len(newsolution))

newjupx=zeros(len(newsolution))

newjupy=zeros (len(newsolution))

newterrax=zeros(len(newsolution))

newterray=zeros(len(newsolution))

newmarsx=zeros (len(newsolution))

newmarsy=zeros (len(newsolution))

for i in range(len(newsolution)):
newxcomp [i]=newsolution[i] [1] [0]
newycomp [i]=newsolution[i] [1] [1]
newjupx [1i]=DistJUP*cos (theta+2*pi*newsolution[i] [0]/T)
newjupy [1]1=DistJUP*sin(theta+2*pi*newsolution[i] [0]/T)
newterrax[i]=-UA*cos(2*pi*newsolution[i] [0]/(3600%24*365))
newterray [i]=UA*sin(2*pi*newsolution[i] [0]/(3600%24%365))
newmarsx [i]=Distmart*cos (2*pi*newsolution[i] [0]/Tmart)
newmarsy[i]=Distmart*sin(2*pi*newsolution[i] [0]/Tmart)

import matplotlib.pyplot as plt

plt.plot(newmarsx, newmarsy, ’yellow’, xcomp,ycomp, ’r’, newxcomp, newycomp, ’r’, newjupx,
newjupy, ’g’, jupx, jupy, ’g’, terrax, terray, ’b’, newterrax, newterray, ’b’)

(newsolution[2] [1] [0])
maxim=0;
minim=0;
for i in range(len(newsolution)):
if (newsolution[i] [1] [0]>maxim): maxim=newsolution[i] [1] [0]
if (newsolution[i] [1] [0]<minim): minim=newsolution[i] [1] [0]
print (maxim-minim)/(2%UA)
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