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Abstract 
This paper analyzed the voyage of the solar sail from Earth to Mars. Three partial models 

were established to describe the process: Solar Sail Thrust Model, Ideal Solar Sail Time Optimal 

Transfer Orbit Model and Orbital Transfer Optimization Model Based on PSO. 

In the Solar Sail Thrust Model, the formula ( 2 2 2

0 12cos /F P A L r    ) was established 

to describe the sun pressure of the solar sail. 

In the Ideal Solar Sail Time Optimal Transfer Orbit Model, the differential equations were 

set up to describe the motion of the spacecraft. And the initial constrains and final constrains 

were provided. Adopting Hamiltonian operator, the covariate variable 1 2 3 4[ ]T      

were built. Applying the pontryagin minimum principle to find optimal control input that 

minimizes Hamilton's function, the optimal angle * , which can be expressed by covariate 

variables, can be calculated. The orbital transfer problem of solar sail can be converted into an 

optimization problem of multi constrains and multivariable. 

In the Orbital Transfer Optimization Model Based on PSO Model, particle swarm 

optimization algorithm was adopted to calculate a more accurate answer. Also, dynamic 

penalty function constraint was added and the penalty function of orbital transfer was defined 

as F J M S   . 

By changing the area of the solar sail ( 2 2 2 210000 50000 100000 200000m m m m  

respectively), graphs of orbital transfer, direction adjustment and velocity were drawn to 

satisfy the problem’s demand. Finally, When 2100000 , 700sA m m kg  , payload reaches 

a relatively large value of 1300kg and transfer time reduces to 504d(about 116 days less than 

the flight plan in reference [8]). And the final velocity (8.3 /km s ) smaller than 9 /km s  is 

within the safe landing velocity range. 
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1. Introduction 

The success of JAXA’s IKAROS and NASA’s Nanosail-D has demonstrated the 

technological capability of deploying and actively controlling a photonic solar sail in 

the interplanetary space. The solar sail is a thruster that obtains the thrust by reflecting 

photons from its ultralight sail and through the momentum exchange between 

photons and the sail surface. Since solar sail spacecraft are free from carrying fuels and 

have low cost, they are superior in long cycle missions like landing on Mars. 

According to the assignment, our work begins at the point when the solar sail 

escapes the earth and ends when it can land on Mars with a safe relative velocity. As 

for solar-powered spacecraft, the acceleration comes from the solar sail (In fact, the 

solar attraction also contributes to the acceleration) and is proportional to the size of 

the sail. The bigger the sail is, the faster the spacecraft can speed and thus the shorter 

the flight time will be. However, since the total mass is limited and the final speed must 

be less than or equal to 9 /km s  , adding the area of the sail means reducing the 

payload and increasing the final speed. So to optimize the flight plan, we find it 

necessary to obtain a balance between payload and the size of the sail. 

To realize the voyage from Earth to Mars, we established three partial models to 

describe the process and they are: Solar Sail Thrust Model, Ideal Solar Sail Time 

Optimal Transfer Orbit and Orbital Transfer Optimization Model Based on PSO. With 

the combination of the three partial models, the optimal flight plan can hopefully be 

found after calculation run on computers.  

2. Assumptions and Notations 

2.1 Basic Assumptions for Our Models. 

 Assume that there is only specular reflection of sunlight on the solar sail. On the 

one hand, the model can be simplified because specular reflection ensures that 

the value of the tangential acceleration of light pressure is always zero. On the 

other hand, by choosing proper material, we can indeed approximate this effect. 

 Suppose the light pressure acts on the spacecraft's center of mass. If it does not 
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act on the center of mass, there will be additional angular acceleration, and it is 

not conducive to the stability of the spacecraft, also the simulation of flight state. 

Of course, it can simplify the model. 

 Assume that the spacecraft is only exposed to the sun's gravity and light pressure 

during the flight. Because after the spacecraft is free from earth bondage and 

before it is captured by Mars, the gravities from both the earth and Mars are very 

small. And ignoring the two gravities can simplify the calculation and facilitate the 

model establishment. 

 Suppose the solar sail does not require time to adjust. In another word, the change 

of the acceleration is abrupt. We know the effect of this adjustment is weakness. 

So, comparing with the whole process we can absolutely ignore this influence. If 

we do not deal with it in this way, the possibility of solving problems will be 

reduced. 

 Assume that the size of the solar sail makes no difference to the shape of it, 

especially during the process of acceleration. And its shape can be kept forever. 

After disregarding the shape changes due to acceleration, then, the value of the 

optical force is only related to the distance between the sun and the spacecraft 

and the angle between the normal and the light path. 

 Assume that when the spacecraft’s speed drops to 9km/ s  , it just enters the 

landing orbit of Mars. Because in this model, we don’t care the way how the 

spacecraft land on Mars. 

2.2  Notations 

Table 1 Notations 

Variable Explanations 

P( )r  
The sun pressure when the distance from Sun is r 

( 2/N m ) 

R  

The radius of Sun (m) 

0I  
The specific intensity of the integrated 

frequency(
7

0 2.04 10 /I W m  ) 

iF  
The light pressure(N) 
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A  

The effective area of sail( 2m ) 

L  The distance between Sun and Earth( AU ) 

0P
 

The light pressure at 1AU(
6 2

0 4.56 10 /P N m  ) 

s  The mass per unit area of the sail( 2/kg m ) 

ca  
Characteristic acceleration( 2/m s ) 

,0 ( )effP P
 

The effective light pressure acting on a non-ideal 

solar sail from 1AU(
2

,0 ( ) 8.288 /effP P N m ) 

0a  2

0 5.95 / 1a m s at AU  

  Light pressure factor, the ratio of solar pressure 

acceleration to the solar gravitational acceleration 

0

ca

a
 

 

  The collaborative variable 

3. Physical Analysis of Model 

To realize the voyage from Earth to Mars, we established three partial models to 

describe the process and they are: Solar Sail Thrust Model, Ideal Solar Sail Time 

Optimal Transfer Orbit and Orbital Transfer Optimization Model Based on PSO. 
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3.1 Solar Sail Thrust Model  

  

Fig 1. A picture showing the process of reflection of light on an ideal solar sail, and the 

mechanical effect. It can tell us that the light pressure is always perpendicular to the surface of 

the solar sail, and the tangential force disappears. 

 

It is assumed that the solar sail is ideal, that is, the solar sail is a perfect reflector 

and does not absorb any photons.  

Sun pressure is expressed as [1]: 

 

3

20 2
2

P( ) 1 [1 ( ) ]
3

I R
r

c r

  
   

 
 (1) 

R refers to the radius of Sun. 

The light pressure generated by incident photons is: 

 P( ) (cos sin )iF r A n t     (2) 

A is the effective area of sail,  is the angle between the incident ray and the 

unit normal line of the solar sail n . The normal line of the solar sail n is perpendicular 

to the sail and away from the sun. t is the unit vector perpendicular to the normal n , 

and its counterclockwise direction is positive.  

 

Then the light pressure generated by reflection photons is: 
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 P( ) (cos sin )iF r A n t     (3) 

The effective area is where the surface of the sail is projected on a plane 

perpendicular to the sun’s rays. cosA A   So the values of optical force acting on 

the ideal sail is 

 
22 ( ) cosi tF F P r A n   (4) 

That is why the optical force always has the same direction with n , both of them 

are away from the sun. From the equation, we can also find that Light exerts a pressure 

equal to twice its energy density when reflected from a surface. 

 

The power F  obtained by the solar sail is always along the normal direction, its 

size is 

 
2 2 2

2 20 0
02 2 2 2

1 1 1

2 2cos
cos 2 cos

/

P L P Lm
F A P A

r r r L


 


          (5) 

 

Among them, L is the distance between Sun and Earth, 1r  is the distance from 

the sun to the solar sail, 0P  is the sun pressure at 1 AU . 

3.1.1  Analysis of Solar Sail Thrust Model 

Solar-powered spacecraft, powered solely by reflected solar photons, has a thrust 

range that is only a "quasi-circular" small area located on the surface of the sail in 

Figure 2 and always pointing away from the sun. In addition, it can be seen from the 

analysis that by changing the orientation of the sail, the orbital angular momentum of 

the solar sail spacecraft can be reduced so as to make it move relative to the inner 

helix of the sun, and the orbital angular momentum of the solar sail spacecraft can 

also be increased, making external spiral movement relative to the sun.  

The question shows solar sailing from Earth to Mars, thus this is a process away 

from the sun. What we need to do is to reduce the orbital angular momentum. 

6 2

0 4.56 10 /P N m 
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Fig 2. A picture showing two different kinds of motion depending on the angle of the sail. 

The external spiral motion can generate smaller resistance, while the internal spiral motion 

makes the resistance larger. 

3.1.2  The Main Parameters of Solar Sail 

The main parameters of solar sail are: total solar sail load, solar sail payload, 

characteristic acceleration, light pressure factor. 

(1) Total solar sail load 

Defined as the mass per unit area of a sail (including the sail surface and the mass 

of structure required to deploy, stretch and sail the sail) 

 s
s

m

A
   (6) 

s  is an important parameter to show the effectiveness of solar sail structure design. 

(2) Solar sail payload 

 
s p p

s

m m mm

A A A
 


     (7) 

It is an important parameter that indicates the pressure factor of the sail, defined 

as the mass per unit area of the solar sail spacecraft, "P" means the entire spacecraft 

mass except the sail mass. 

(3) Characteristic acceleration   

It is defined as the maximum acceleration of solar sail obtained at 1AU from the 

sun: 



Team 699                                                         Page 9 / 28 

9 
 

 
,00

,0

( )2
(0, ) ( )

eff

c eff
p

s

P PS A A
a q P P P

mc m m

A


  



 (8) 

,0 ( )effP P  is the effective light pressure acting on a non-ideal solar sail from 1AU from 

the sun[2]. 

(4) Light pressure factor  

It represents the ratio of the solar pressure acceleration of a solar sail 

perpendicular to the sun's rays to the solar gravitational acceleration of the solar sail[3] 

( 2

0 5.95 / 1a m s at AU ) 

 
0

ca

a
   (9) 

Light pressure factor  is an important parameter of solar sail. Since both solar 

pressure and solar gravitation are inversely proportional to the square of the distance, 

the pressure factor has nothing to do with the distance but only relates to the solar 

sail spacecraft load. For the ideal solar sail, for 

 
2

1.53

( / )g m



  (10) 

The ideal solar sail light pressure type can also be written 

 
2cosSRP

m
F n

r


   (11) 

Where sunGM  , G is the Gravitational constant, sunM  is the weight of the Sun, 

m is the whole weight of the sun sail, because of sunm M , .sunGM   

3.2 Ideal Solar Sail Time Optimal Transfer Orbit 

3.2.1 Equation of motion 

The system model is shown in figure 3, where the x-axis points in the vernal 

equinox direction. The spacecraft is modeled as a perfectly flat solar sail with mass m 

and area A and can be considered as a particle on the dynamics. Define solar sail 

coordinate system b bs x y . The b bs x y  axis defines the normal direction of the solar 

sail. The solar sail   ( 2 )      is defined as the angle between the bx  axis 

and the sun's rays striking the sail. The solar sail's initial and target orbits are the orbits 
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of the solar system's planets (Earth and Mars), modeled here as a heliocentric coplanar 

orbit. 

 

Fig 3. A picture showing the coordinate and the meaning of parameters 

 

Given the polar form of the solar sail equation of motion, the position vector is 

( , )r r  , the velocity vector ( , )rv v v , where ,r

r
v v r

t t


 
 
 

, then the solar 

sail two-dimensional heliocentric orbital equation of motion is as follows[4]: 

 
23

2 2

2

2

(12.1)

(12.2)

cos
(12.3)

sin cos
(12.4)

r

r

r

r
v

t

v

t r

vv

t r r r

v v v

t r r





 



  

  












  




 



 (12) 

 where   is the light pressure factor, 
2r


 is the contribution of the sun’s the 

universal gravitation to the solar sail’s acceleration. 

3.2.2 Restrictions 

The above equations of motion can be written in the form of ( , , )
x

f x u t
t





, where 

the state vector and the control input are respectively defined as [ ]T

rx r v v  
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andu  . 

The initial conditions of the solar sail transfer orbit are
0 0 0 0( ) , ( )r t r t  

0 0

0

1
( ) 11.2 / , ( )rv t km s v t

r
  .   

Terminal constraints after entering the target orbit: 

1
( ) , ( ) , ( ) 0, ( )f f f f r f f

f

r t r t v t v t
r

      

Where, 
0t  and ft , respectively, departure time and arrival time, 

0r  And fr  are the 

orbital radii of the initial planet and the target planet, respectively. The mission of departing 

from Earth to Mars requires 
0 0( )t   and ( )f ft  . 

3.2.3 Optimal Conditions 

The objective function of optimal control of solar sail time is 

 
0

ft

t
J dt   (13) 

The Hamilton function of the system is [5]: 

 23 2

2
1 3 42 2 2

( , , , ) 1 ( , , )

cos sin cos
1 ( ) ( )

T

r
r

H x u t f x u t

v v v v
v

r r r r r r

  

 

      
  

 

       
 (14) 

Where 1 2 3 4[ , , , ]T     , the collaborative variables. 

The corresponding co-equation equation can be obtained by solving
H

t x

 
 

 
. 

 

2 23 2

21
3 42 3 2 3 3

2 cos 2 2 sin cos
( ) ( )rv v v v

t r r r r r r

        
 


     


 (15) 

 2 0, If and only if ( )f ft
t


 


 


 (16) 

 3 4
1

v

t r

 



  


 (17) 

 34 2 42 r
v v

t r r r

  
   


 (18) 

According to Pontryagin minimum principle, the optimal control inputu   , 

minimizing Hamilton function: 

 arg min ( , , , ), 0
u U

u H x u t t  


    (19) 

Where x  and  represent the optimal state and the co-ordination vector. That 
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is, the optimal direction angle   can be obtained from 0
H







. 

 

2 2

3 3 4

4

4

4 3

4 3

3 9 8
arctan( ) 0

4

0 0, 0

0, 0
2

while

while

while

  




  


 



   
 



  

   



 

  (20) 

From the co-equation equation (15) ~ (19) can be seen, Optimal control input can 

be completely determined by the initial value of co-variant. Therefore, the initial value 

of co-kinetic variables can be used as the optimal variable, so the solar-transfer orbit 

optimization problem can be transformed into a multi-constrained multivariable 

optimization problem with optimal parameters: 

 0 1 2 3 4[ ]T

fY t t      (21) 

3.3 Orbital Transfer Optimization Model Based on PSO 

Since we have converted the optimal control problem into parameter optimization 

problem, particle swarm optimization can be used to optimize the parameters and get 

optimal transfer trajectory. 

Particle Swarm Optimization (PSO) is an evolution computing technology based 

on theory of swarm intelligence [6]. PSO optimizes the search intelligently by the group 

generating from the cooperation and competition among particles. PSO has a strong 

versatility and the characteristic of global optimization. 

PSO is a population evolutionary algorithm proposed by simulating the predatory 

behavior of birds in nature. It has the mechanism of information sharing among 

particles, and the ability to remember the best position of particles. It is based on 

unique search mechanism. In the feasible solution space and velocity space, the 

particle swarm can be initialized randomly. That is to determine the initial position and 

velocity of particles. The position is used to represent the solution of the problem. 

The velocity and position of each particle are updated according to the following two 

formulas [7]: 

 , , 1 1 , , 2 2 , ,( 1) ( ) [ ( )] [ ( )]i j i j i j i j g j i jv t wv t c r p x t c r p x t     
 (22) 
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 , ,( 1) ( 1), 1, 2, ,i j i jx t x t j d    …
 (23) 

The graph below vividly shows how the particle position is updated: 

 

Fig 4. A picture showing the influence of self-memory, the group, and current velocity to a 

new position 

 

The detailed flow chart of the basic particle swarm algorithm is as follows: 

 
Fig 5. A flow chart of the basic particle swarm algorithm 
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3.3.1 Algorithm Parameters Analysis 

The parameters of the standard PSO algorithm include: inertia weight factor, 

positive acceleration constant 1 2,c c  , maximum velocity maxv  , population size n  , the 

maximum number of iterations maxT . 

 

(1) Inertia weight factor[8]（w） 

w  is used to control the effect of current particle velocity on the next generation’s 

velocity. It can affect the capabilities of the global and local search. 

(2) The positive acceleration constant（ 1 2,c c ） 

The acceleration constants 1 2,c c   respectively represent the weight of the 

statistical acceleration item of each particle toward the position of pbest and gbest. 

Their reasonable settings can improve the convergence speed and avoid local minima. 

(3) Maximum velocity ( maxv ) 

It decides the maximum distance the particle can reach in one flight 

(4) Population size ( n ) 

The larger the number of particles is, the larger the search space will be and the 

easier it is to find the global optimal solution. However, the elapsed time is increased 

accordingly. 

(5) The maximum number of iterations ( maxT ) 

Usually, it is the condition of stopping algorithm. 

 

3.3.2 Disposal of The Condition of Constraint: 

Constraints optimization problems can be expressed as follows [9]: 

 min ( )f x  (24) 

 . . ( ) 0( 1,2, ,n)is t g x i  …  (25) 

 
( ) 0( 1,2, , )jh x j p  …

 (26) 

 ( 1,2, , )k k kl x u k d   …  (27) 

Where, x is the decision vector 1 2[x , x ,..., x ]T

dx  , d is the dimension of decision 

vector. 
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When solving the constraint optimization problem, it is necessary to satisfy the 

inequality constraint condition and the equality constraint condition. In the range of 

values, the optimal decision variable is searched to minimize the target function value. 

 

3.3.3 Constraints Processing Method Based on Penalty Function 

Aiming at the terminal constraints in the solar sail trajectory optimization problem, 

a constraint processing technique is adopted, that is, the trajectory optimization 

problem is equivalently transformed into a constrained optimization problem. Our 

model mainly uses penalty function method 

Using the penalty function, map the original problem as: 

min ( ) ( ) ( )fitness x f x x   

( )f x is the objective function value. ( )x is the penalty function. ( )fitness x is 

the fitness value function. 

 

In this model, we define penalty function of the transfer orbit as： 

 ( )fitness x J MS   (28) 

J is i he i sde  i undthsnd(13).i ( 0)M  is i he i e dlth i ulthn..i ( )f fS x t x  ii s i he i

tnd h.lsdhitndeshsndinuihe i ntl.i lstih.ld u .in.bsh. 

 

When the condition meets its constraints, S=0, then, no matter how much M is, it 

is always true that ( )fitness x J . That means there is no penalty. However, when it 

doesn’t satisfy the condition, S>0, and the more serious this kind of damage is, the 

larger the value of S is. Also, ( )fitness x J MS   is larger. It means damaging the 

condition is also a kind of penalty. The penalty is increased with the growing of M. 

According to the experience, it is proper to make
1 , [10,1000]i iM cM c   . 

 

4. Results and Discussion 

During the process of the transition from Earth to Mars, the solar sail transforms 

from Earth’ orbit to Mars’ orbit in the sun-centered ecliptic. Because the distance from 
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Mars to Sun is further than that from the Earth to Sun. The solar sail needs to spiral 

out to escape the sun (left part in fig 2).  

The terminal constraint condition is reflected in the performance indicator 

function by using the orbit transfer algorithm based on the minimum value of 

Pontryagin, and the penalty function. Then we use PSO to search and optimize the 

optimal solution, find out the minimum transfer time. We find the optimal orbit 

according to the kinematic relations. 

The terminal constraint condition is : 

( ) 1.524 , ( ) , ( ) 1/ 1.524, ( ) 0f f f f r fr t AU t v t v t     . 

Choosing an ideal solar sail whose specific acceleration is 21 /k mm s . The simulation 

is based on PSO. The radiuses of earth and Mars are 1AU and 1.524AU respectively. 

The optimization parameter is 0 1 2 3 4[ , , , , , ]T

fY t t     . As for the calculating the time 

interval, it is necessary to reduce one optimal variable,
0t ,because it is no relation with 

the launch time. 

Although the upper and lower bounds of the covariate variable initial value can 

take positive and negative infinity, the actual calculation time is generally given 

reasonably, taking ± 5 in our model. After repeated debugging, the running time and 

convergence of the algorithm are balanced. The parameters of PSO are eventually set 

as: 0.5w  ,
1 2 2c c  , 3maxv  , 200n  , 1000maxT  . 

 The question gives that the sail is made of material of mass 7 2/g m  and the mass 

of the sail plus payload is 2,000 kg. 

  So,  27 /s
s

m
g m

A
     7

p p

s

m m

A A
       

2

1.53 1.53

( / )
7

pmg m

A


 

 



 

According to the differential equations (12),    will affect the acceleration in 

the radial direction and the angular acceleration. Therefore, if we choose different A , 

different optimization results can be got from PSO simulation. 

Through the access to information [10], we found that the general area of the solar 

sail is about 270000m  (The radius of the circle is 150m). Therefore, we chose A as

2 2 2 210000 50000 100000 200000m m m m . 

Here are our simulation results: 
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1. When A= 210000m . 

After the simulation, the solar sail’s flight time is 1600d, and the initial value of 

the co-variant is  

0 1.799 1.224 2.652 1.[ 5 ]9 3    ,

2 2

3 3 4

0

4

3 9 8
arctan( ) 66.1

4

  




 
  

   

 

Fig 6. The voyage of the solar sail when A= 210000m  The voyage time is so long, 

because the solar sail has to run a lot of circles. And after each circle, the radial distance 

from the solar sail to Mars is changed inappearantly. 
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Fig 7. The adjustment of the solar sail’s angle following the change of time (A= 210000m ) The 

direction angle is gradually declining. It declined very fast in the beginning and became 

almost horizontal after fast decline. 

 

Fig 8. The change of the solar sail’s velocity following the change of time (A= 210000m )  

This voyage is a process of slowing down. And the acceleration is smaller, when the distance 

from the solar sail to the sun is further. When it reaches the destination, the speed is about 

6.7 km/s (lower than 9 km/s). 

 

2. When A= 250000m . 

After the simulation, the solar sail’s flight time is 782d, and the initial value of the 

co-variant is 

0 1.572 1.304 2.325 1.[ 904]   ,
2 2

3 3 4

0

4

3 9 8
arctan( ) 64.2

4

  




 
  

   
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Fig 9. The voyage of the solar sail when A= 250000m  Comparing with Fig 6, the time is 

less. And after each circle, the change of distance is obvious. It is better than the first 

scheme. 

 

Fig 10. The adjustment of the solar sail’s angle following the change of time (A= 250000m ) 

The direction angle is gradually declining. It declined very fast in the beginning and became 

almost horizontal after fast decline. 
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Fig 11. The change of the solar sail’s velocity following the change of time (A=

250000m ) When it reaches the destination, the speed is about 7.2 km/s (lower 

than 9 km/s). 

3. When A= 2100000m . 

After the simulation, the solar sail’s flight time is 504d, and the initial value of 

the co-variant is  

0 1.609 0.042 0.160 1.597[ ]    ,

2 2

3 3 4

0

4

3 9 8
arctan( ) 32.5

4

  




 
  

   

 

Fig 12. The voyage of the solar sail when A= 2100000m  Comparing with Fig 6 and Fig 9, the 
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time is less. And after each circle, the change of distance is more obvious. It is better than 

the first scheme, also the second one. 

 

Fig 13. The adjustment of the solar sail’s angle following the change of time (A= 2100000m ) 

The direction angle increased first and then decreased, and the rate of rise is faster than the 

rate of descent 

 

Fig 14. The change of the solar sail’s velocity following the change of time (A= 2100000m ) 

When it reaches the destination, the speed is about 8.3 km/s (lower than 9 km/s). 

 

4. When A= 2200000m . 

After the simulation, the solar sail’s flight time is 480d, and the initial value of 

the co-variant is  

0 1.564 0.012 0.154 1.632[ ]    ,

2 2

3 3 4

0

4

3 9 8
arctan( ) 32.3

4

  




 
  

   
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Fig 15. The voyage of the solar sail when A= 2200000m  Comparing with Fig 6, Fig 9 and Fig 

12, the time is least. And after each circle, the change of distance is much more obvious. 

Seeing in this way, it is better than all the other schemes. 

 

Fig 16. The adjustment of the solar sail’s angle following the change of time (A= 2200000m ) 

The direction angle increased first and then decreased, and the rate of rise is faster than the 

rate of descent 
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Fig 17. The change of the solar sail’s velocity following the change of time (A= 2200000m ) 

The figure tell us that when A= 2200000m  or larger, the solar sail cannot land on the 

Mars safely. So, though the time spent is least, it is infeasible. 

 

 

5. Strengths and Weaknesses 

5.1  Strengths 

1. In this model, we think the solar sail is ideal and can reflect the light completely. 

By ignoring these parts difficult to predict and calculate, to a large extent, the model 

is simplified. Because, sometimes, these parts are unexpected and random. Then we 

can solve the problem efficiently. 

2. By using Hamilton’s equation to transform the orbit optimization problem into a 

multi-restriction problem, the abstract problem goes specific. After this 

transformation, we can use mathematical method to deal with it. 

3. Using Hamilton’s equation makes the result more accurate. Because Hamilton’s 

equation uses the integration principle and differential stationary point to make the 

change of time clear. Then we can find the orbit spending the shortest time. 

5.2 Weaknesses 

1. When the size of the solar sail is increasing, its shape is inevitably following to 
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change. Then the light pressure acting on the solar sail is also changed a lot, especially 

when there is acceleration. So it will make the result of this model different from the 

fact. 

2. This is only an ideal model. The reflection is regarded to be absolutely specular 

reflection. And there is no absorption of the sunlight. But we know that there is no 

material can realize this point. So error is larger after dealing with the model in this 

way. 

3. In the process of establishing our model, we think the orbits of Earth and Mars in 

the shape of circle. In fact, there are many differences between our model and the fact. 

First, the velocity of Earth and Mars is always changing, but it is invariable in the model. 

Second，the direction of the sunlight is changing asymmetrically, while in our model 

it is symmetrical. 

6. Conclusion 

We analyzed the process of the voyage from earth to Mars. There are two main 

forces acting on the solar sail, the sunlight pressure and solar gravity. And based on 

our assumption, the light pressure is always perpendicular to the surface of the solar 

sail. That is our model about light pressure. The feasible method to arrive at Mars is 

using external spiral motion. Then in order to solve the problem about the shortest 

time, we use PSO to optimize the orbit. The result we should get is the size of the solar 

sail which could optimize the time of the voyage and the orbits. By using Hamilton’s 

equation and the particle swarm optimization, optimize and solve the problem. 

 In our result, the spacecraft should have the ability to maintain the original speed. 

In another word, the speed should slow down slowly. Also, the final velocity should be 

lower than 9km/s, and the closer will be better. Finally, after comparing different 

process with different parameters, we get an optimized result, when

2100000 , 700sA m m kg  , payload is relatively large 1300kg, transfer time is 504d. 

At the beginning of the voyage, the angle of the solar sail is 32.5°. Then adjust the 

angle following the time as Fig 13 shows, and the solar sail can reach Mars in 504 days. 

It spends 116 days less than the plan in reference [8]. And when it reaches Mars, the 

speed will slow down at 8.3km/s. 
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Appendix I 

Code written in python 

# coding: utf-8   

import numpy as np     

import random      

import matplotlib.pyplot as plt 

from math import pi,sqrt,cos,sin 

   

#--------------------------parameters-----------------------------     

class PSO():     

    def __init__(self,pN,dim,max_iter):     

        self.w = 0.5                #Inertia weight factor，[0.1] 

        self.c1 = 2                 #positive acceleration constant 

        self.c2 = 2                 #positive acceleration constant 

        self.r1= 0.6                #random constant 

        self.r2= 0.3                #random constant 

        self.pN = pN                #number of particle     

        self.dim = dim              #searching dimensionality 

        self.max_iter = max_iter    #number of iterations    

        self.X = np.zeros((self.pN,self.dim))       #location     

        self.V = np.zeros((self.pN,self.dim))       #velocity 

        self.pbest = np.zeros((self.pN,self.dim))   #personal optimal    

        self.gbest = np.zeros((1,self.dim))         #total optimal 

        self.p_fit = np.zeros(self.pN)              #personal historical optiaml     

        self.fit = 1e10             #total best finess 

        self.r0 = 1.0 

        self.u0 = 0.0 

        self.v0 = 1/sqrt(self.r0) 

         

        self.rs = 1.524 

        self.us = 0.0 

        self.vs = 1/sqrt(self.rs) 

 

        self.rf = self.r0 

        self.uf = self.u0 

        self.vf = self.v0 

 

    def getparameters(self): 

        return self.gbest 

 

     

    def getrf(self): 

        self.rf = self.rf + self.uf 
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        return self.rf 

 

    def getuf(self,x): 

        uu = 6.67*1.99e10 

        k = 2 

##        q = x[random.randint(1,self.dim-1)] 

        q = x[0] 

        self.uf = self.vf*self.vf/self.rf-uu/self.rf/self.rf+k*cos(q)*\ 

                    cos(q)*cos(q)/self.rf/self.rf 

        return self.uf 

 

    def getvf(self,x): 

        k = 2 

##        q = x[random.randint(1,self.dim-1)] 

        q = x[0] 

        self.vf = -self.uf*self.vf/self.rf+k*sin(q)*cos(q)*cos(q)/self.rf/self.rf 

        return self.vf 

         

#----------------------------fitness-----------------------------     

    def getfit(self,x):     

        q1 = 12.5 

        q2 = 15 

        q3 = 40 

        cfit = q1*abs(self.rs-self.getrf()) + q2*abs(self.vs-self.getvf(x)) + \ 

               q3*abs(self.us-self.getuf(x)) + x[self.dim-1] 

         

        return cfit  

#---------------------initialzation----------------------------------     

    def init_Population(self):     

        for i in range(self.pN):         

            for j in range(self.dim):   

                self.X[i][j] = random.uniform(0,1)   

                self.V[i][j] = random.uniform(0,1) 

            self.pbest[i] = self.X[i]     

            tmp = self.getfit(self.X[i])     

            self.p_fit[i] = tmp     

            if(tmp < self.fit):     

                self.fit = tmp     

                self.gbest = self.X[i]     

         

#----------------------refresh----------------------------------     

    def iterator(self):     

        fitness = []     

        for t in range(self.max_iter):     
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            for i in range(self.pN):                #refresh gbest\pbest     

               temp = self.getfit(self.X[i])     

               if(temp<self.p_fit[i]):              #refresh personal optimal     

                   self.p_fit[i] = temp     

                   self.pbest[i] = self.X[i]     

                   if(self.p_fit[i] < self.fit):    #refresh total optimal     

                       self.gbest = self.X[i]     

                       self.fit = self.p_fit[i]     

            for i in range(self.pN):     

                self.V[i] = self.w*self.V[i] +\ 

                            self.c1*random.uniform(0,1)*(self.pbest[i] - self.X[i]) +\ 

                            self.c2*random.uniform(0,1)*(self.gbest - self.X[i])     

                self.X[i] = self.X[i] + self.V[i]     

            fitness.append(self.fit)     

            print(self.fit)                         #display     

        return fitness     

    

#----------------------simulation-----------------------     

run_sim=1000 

run_dim=6 

run_n=200 

my_pso = PSO(pN=run_n,dim=run_dim,max_iter=run_sim) 

my_pso.init_Population()     

fitness = my_pso.iterator()   

#-------------------draw--------------------     

plt.figure(1)        

t = np.array([t for t in range(0,run_sim)])     

fitness = np.array(fitness) 

plt.plot(t,fitness, color='b',linewidth=3) 

plt.title("Figure1")     

plt.xlabel("iterators", size=14)     

plt.ylabel("fitness", size=14) 

plt.show() 


