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Abstract

This paper considers the feasibility of using a magnetic field to confine the trajectories of
dispelled ions from an electric ion thruster. We considered the physical demands of designing
a magnetic plume collimator at two locations relative to the ion thruster: directly at the end
of the grate accelerator, and at reasonable distances beyond the thruster. The demands were
developed under the pretext that the first priority in these deliberations was to increase thrust
to propellant efficiency. A second priority, which is not treated extensively in this paper due
to its dependence on specific spacecraft designs, is to mitigate sputter effects associated with
ware on the spacecraft.

In lieu of laboratory data, this paper seeks to develop a rigorous physical understanding of
the difficulties associated with creating such an apparatus, and discuss the issues one might
face given specific design possibilities. We also develop a simple model of an ideal magnetic
lens in order to estimate the strength, position, and size of such a lens.

The paper mathematically develops a set of physical constraints a magnetic collimator must
abide by to be deemed a reasonable design option. The physical constraints we developed
indicated magnetic fields were an impractical mechanism for reducing beam divergence in
electric ion thrusters.
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1 Nomenclature

Symbol Description

Isp Specific Impulse of the ion thruster
T Thrust of the Xenon ion thruster
M Mass of the Xenon particles
P Power of the Xenon ion thruster
ηm propellant utilization efficiency.
α Thrust correction factor for presence of doubly charged species in the thrust
Ib Ion beam current
Vb Voltage between the two grids
I+ Ion beam current due to singly charged Xenon ion
I++ Ion beam current due to doubly charged Xenon ion
ṁi Mass flow rate
qore Charge of the Xenon ions
ηe Electrical efficiency of the thruster
ηT Total efficiency of the thruster
T/P Thrust to total input power ratio
K Boltzmann’s Constant
ρ(r) Ion density function

Table 1: All important variables

The thruster axis, throughout this paper, is defined as in the axial direction in the figure above.
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2 Introduction
Ion thrusters offer great advantages over chemical propulsion systems in many space travel scenar-
ios. In recent decades, physicists have spent considerable time designing ion thrusters capable of
acting as the primary propulsion mechanism on spacecraft. The high exhaust velocities achieved
by these devices greatly enhance their fuel efficiency as compared to chemical alternatives, creating
massive weight savings, and potentially opening the door to longer distance missions. Despite this
promise, some pressing design concerns still remain.

Some of the challenges ion thrusters face involve the large divergence of their exhaust plume.
This is primarily an issue for two reasons: firstly, the radial component of an ion’s momentum
does not contribute to the forward momentum of the payload, constituting a waste of energy,
and secondly, the divergent plume, which is comprised of high energy ions, can bombard nearby
components of the spacecraft and either corrode or bond with those surfaces, compromising the
integrity of those components with time. In this paper we investigate whether an additional
magnetic field could efficiently solve either of these problems associated with beam divergence.

We first consider whether a magnetic field can effectively improve the thrust to power ratio of
a ion propulsion system, for if a magnetic field can be designed to collimate the beam and decrease
the divergence half-angle, then, incidentally, the ion bombardment issue should also be alleviated.
Our theoretical work follows a conservative line of thought; given the ideal magnetic field, what is
the best job we could possibly do at collimating the beam, and is it good enough.

If it is determined that using magnetic fields to improve the thrust to power ratio is inefficient,
then we shall proceed in determining whether an apparatus can be designed for the sole purpose
of avoiding ion bombardment.

The structure of the paper proceeds as follows. First we provide some background information
on ion thrusters and calculate some basic quantities and properties of the thruster in question.
Then, we prescribe certain operational requirements for the distinct cases of a magnetic collimator
placed at the thruster, and one placed beyond the thruster. Then it seeks to apply feasible
apparatuses to these to scenarios.

3 Assumptions

In this section we will discuss the assumptions we made while modeling the motion of the particles
in the Xenon ion thruster.

• We assume that the acceleration grids are flat. That is, the grid optics is such that the grids
are neither concave nor convex in shape. This has an important implication in that the Xenon
ions leaving the grids immediately after have velocities that are parallel to the thrust axis.[KR] Of
course, this does not mean that the the beam will remain uniform in the direction of the thrust
axis. The pressure gradient force, and the collisions between the particles cause the plume to
diverge.

• We assume that the beam, upon leaving the final grid of the thruster, diverges uniformly.
That is to say, the average half angle of the divergent beam remains constant. Specifically, for our
case, we assume that the average half angle is 20◦. [Wan]

• We assume that the propellant utilization of Xenon ion thruster is 90% [HKMA]. This is a
fairly good approximation in that most of the industrial standard Xenon thrusters operate on the
same propellant utilization efficiency.
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• Another assumption we make is that the fraction of doubly charged Xenon ion current in the
beam is 0.1. That is, I++

I+ = 0.1 and that presence of triply charged Xenon ions is negligible. This
small fraction of doubly charged ion current will change T and Isp by at most only 5%.[EB03]

• We also assume that the beam in our Xenon ion thruster is nearly mono-energetic. That is,
the speed of every particle is nearly the same. This is not a bad assumption, since the fraction of
doubly charged Xenon ion current is significantly less than that of singly charged ion current.

4 Spacecraft Thrust Fundamentals

4.1 Thrust and specific momentum
The thrust of the spacecraft, due to the ion beam current, is given by [GK08].(see appendix 8.1
for derivations):

T =

√
2MVb
q

Ib [N ] (1)

However, this equation is for a uniform, singly ionized beam leaving the thruster. We know
that the beam does not just contain singly ionized Xe ions, and it also diverges. Only the velocity
component that is parallel to the thruster axis contributes to the net momentum gained by the
spacecraft. Therefore, we add a correction factor of cos(θ), to give us the velocity component
parallel to the thrust axis, where θ is the average angle of velocity of all the particles.

There also exist differently charged Xenon ions in the ion thruster. Assuming that the Xenon
ion thruster contains only two differently charged Xenon ions, that is, Xe+ and Xe++, then we
must introduce a thrust correction factor, α (See appendix 8.2 for details). After accounting for
the divergent beam and the presence of differently charged particles, the thrust equation assumes
the general form:

T = α cosθ

√
2MVb
q

Ib. (2)

We now attempt to calculate the voltage difference between the two grids, as well as find out
the beam current coming out of the thruster. The specific momentum of an electric thruster is
defined by (see appendix 8.3 for details):

Isp =
α× cosθ × ηm

g

√
2eVb
M

(3)

For a specific impulse of 5100s, Xenon ions with an atomic mass of 131.29, ion charge of
1.6 × 10−19C, assuming the fraction of doubly charged Xenon ion current to be 0.1, the average
divergent beam angle to be 20 °, and the propellant utilization efficiency to be 0.9, we have: [GK08]

Isp = 123.6× cos(20)× (0.9)×
√
Vb =⇒ Vb ≈ 2400V. (4)

Using equation 2, we can also calculate the ion beam current, given the thrust of 350 mN:

T = 1.65× Ib ×
√

2400 =⇒ Ib ≈ 4.3A. (5)
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This ion beam current is the total amount of current being lost through the ejected ions. It is
useful because we can find the total power used in accelerating the ions by multiplying it by the
voltage of the accelerating mesh. We will discuss this further now.

4.2 Xenon Ion Thruster Efficiency

In this section we consider the efficiency of the Xenon ion thruster. The electrical efficiency of the
thruster is given by [GK08] :

ηm =
IbVb

IbVb + Po
(6)

where ηe is the electrical efficiency and Po is the other power input to the thruster that is
needed for the formation of the thrust beam.

The total efficiency of the ion thruster, ηT , is given by [GK08] :

ηT = α2 cos2θ ηe ηm (7)

And the thrust per unit input power is given by [GK08]:

T

P
=

2 ηT
g Isp

(8)

5 Design Criterion

In designing a magnetic beam collimator, there are a few basic criterion that we set out to meet.
Firstly, because thrust follows a cos(θ) half-angle relation, we rule out apparatuses that only reduce
the half angle slightly. 35cm diameter thrusters generally have a plume half angle between 15 and
20 degrees [Wan], meaning that thrust can only be increase by a maximum of approximately
6 percent if the plume is perfectly collimated (no radial velocity). As a crude, but reasonable
approximation, we say that the cost, and power losses associated with a magnetic apparatus that
only collimated the beam slightly would far outweigh any gains in thrust. Hence we only look for
solutions that significantly increase thrust (meaning they collimate the beam significantly).

A fundamental question when designing such an apparatus is, "where will it be placed?" In
such deliberations, one must ask: "How costly would it be to build an apparatus here?", "Does the
apparatus require that components on the existing thruster be redesigned, and to what degree?",
and "Where can the beam be most efficiently collimated?" A field placed right at the end of the
thruster, in proximity to the plasma confinement chamber, might be the most efficient placement
for increasing thrust, but could compromise the functioning of the magnetic fields used to confine
the plasma, thereby requiring some significant redesign [GRF11]. These questions must be treated
with care, and will be considered later when investigating feasible designs.

5.1 Optimizing Magnetic Collimator at Thruster
There are very few conceivable designs that would allow a magnetic collimator to be placed at the
thruster without warranting serious redesign on the plasma confinement mechanism. Nonetheless,
there are some ideas to be had here, so an analysis of the forces at the thruster mouth is still useful.
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When considering a collimating beam placed at the thruster, we must consider the dispersion
forces we must counter in order to keep the beam from diverging. There are two fluid-like interac-
tions that cause the ion beam to disperse when it leaves the thruster. Firstly, a pressure gradient
causes the ions to disperse radially and secondly, random particle collisions between the two species
of ions scatter the beam. If we make the reasonable approximation that the ions have a uniform
axial velocity when leaving the thruster, then they will be subject to a radial dispersion force due
to the following radial dispersion forces:[Wie]

Fp = −KT ∇ρ(r)

N

Fc = Na
mamb

ma +mb
vab(vb − va)

(9)

Where in the first expression, K is the Boltzmann constant, T is temperature, ρ(r) is the ion
density function, and N is the ion population, and in the second expression, Fc is the force on
type a ions caused by type b ions where vab is the frequency of collisions between the two species.
Thus, if we can find the gradient of the density function ρ(r), we can calculate the necessary field
B to perfectly collimate the ion plume. If we take a cross-sectional slice of the ion beam just as it
leaves the thruster, we find it has an ion density given by the Gaussian distribution

ρ(r) =
ρo
h(t)

exp(
−r2

2R2h(t)2
) (10)

Where ρo is the ion density at the origin, R is the radius of the thruster, and h(t) describes
the plume’s radial motion such that r(ro, t) = roh(t). The flattening effect of h(t) is shown in the
figure below. If we wish to apply a magnetic field such that the radial forces on each ion are net
zero (i.e. Fp + Fc − FB = 0) then it is to say that h(t) becomes frozen at h(0) which we define to
be unity. Then we can take the gradient of the density function according equation (9) and set it
equal to the Lorentz force as follows

−KT ∇ρ(r)

N
=
KTρo
NR2

r exp(
−r2

2R2h(t)2
) (11)

Then equating our forces we get

KTρo
NR2

r exp(
−r2

2R2h(t)2
) +Na

mamb

ma +mb
vab(vb − va) = q(va ×B)

B =
1

qva
[
KTρo
NR2

r exp(
−r2

2R2h(t)2
) +Na

mamb

ma +mb
vab(vb − va)]

(12)

Before we get too bogged down by the complexity of this expression, lets consider the graphical
renderings below. The second term on the right is independent of radius, so we get a force profile
like the one below, plus some constant.
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This is the generic force profile of a B field that would perfectly counter the dispersive forces
in the plume due to the pressure gradient and ion collisions. Note this approximation does not
take into account the dispersive forces caused by the fringe field of the grates (for which we would
see another spike in dispersion force around the radius (≈ 17cm). What this curve does tell us
tough, is that ions very close to the center experience lower dispersion forces than those closer to
the rim. It also tells us that the greatest dispersive forces (apart from fringe field forces) actually
occur slightly inward from the outer radius of the thruster. This force profile can thus inform
the design of a magnetic field both in terms of magnitude and position. An efficient magnetic
collimating field ought to roughly match this dispersion force profile. Otherwise some ions would
be deflected too much while others wouldn’t be deflected enough. These are the constraints we
place on a feasible apparatus located at the thruster.

5.2 Optimizing Magnetic Collimator Beyond Thruster

The overall goal of a magnetic lens some distance beyond the thruster would be to redirect stray
ions so that they are launched directly behind the thruster, and not out radially at all. This
is because the actual impulse that helps to accelerate the thruster only depends on the axial
component of the ions’ velocity. More exactly, if vex is the exhaust velocity, mxe is the mass of a
xenon atom, and θ is the angle of an ion’s velocity in respect to the fore-aft axis, then the impulse
to the thruster supplied by that ion is:

Ii,axial = mxevex cos θ (13)

Our goal therefore is to increase Iaxial (maximize ∆Iaxial = mxevex(cos θ2−cos θ1)) by creating
some magnetic field which will bend ions towards the fore-aft axis. Notice that the velocity of an ion
is not changed by the magnetic field, since magnetic fields perform no work on particles. Therefore,
taking all of the ions into consideration, we want to maximize:
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Figure 1: The trajectory of a xenon ion through a slab of azimuthal magnetic field. Note that this
is the optimal direction of the magnetic field, which bends the ion towards the main axis as much
as possible.

∆Iaxial = mxevex
∑

all ions

cos θi2 − cos θi1 (14)

where θi1 is the initial angle of the ith ion’s velocity and θi2 is the final angle of the ith ion’s
velocity after going through our magnetic field (both angles measured from the fore-aft axis).

What we will now show is that it is futile to try to design such a magnetic field: Even if we
would be able to sculpt the "most efficient" field possible (one which causes the greatest ∆Iaxial
from a given volume and magnitude of ~B) we will find that this will cause an insignificant increase
in axial impulse.

The "most efficient" ~B is the one which increases the axial component of an ion’s velocity the
fastest, which means that ~F = q(~v × ~B) from the biot-savart law should point as much axially as
possible. ~v has no azimuthal component, since the ions never experience an azimuthal force since
the thruster is radially symmetric. This means that ~v only has radial and axial components, and
thus to convert that radial velocity to axial velocity the most efficiently, ~B should point in the
azimuthal direction (Figure 1). Note that we are not saying that we should actually try to make
an azimuthal ~B: at any point in space there will be ions going in different directions at different
times, and any ~B we define will help some ions, but might even harm others. Merely, we are saying
that if we could define a different ~B for each ion, and that ion was off-axis, this is what it would
be.

We will show that it is impossible to meaningfully impact vaxial with a reasonably strong and
reasonably sized ~B. Imagine that we could create the ~B in Figure 1, with a finite thickness w in
the axial direction, and infinite extent in the radial direction. Say an ion approaches this ~B at an
off-axis angle of θ1. What is the ions ∆vaxial from interacting with the ~B?

First let’s think about this qualitatively. The stronger the ~B and the thicker the slab of it
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(larger w), the more the ion will be curved. Also significant, but out of our control, is e and mxe,
the charge and mass of an ion. If e were larger and mxe smaller, the more the the particle would
be curved as well. What about the velocity of the incoming particle? You might think that this
would not be a factor in the curvature, since the strength of the Lorentz force (~F = q(~v × ~B))
is proportional to v, but the amount of time that this force is impacting the particle (t ≈ w

v )
proportional to inverse v. However, this is not the case: To maintain a particular curvature of
radius R, the particle needs to feel a force of magnitude mxev

2

R in order to receive enough centripetal
acceleration. Thus, as v increases, the radius of curvature also increases.

Now, for a given curvature, determined by ~B,w, e,mex, and v, how does θ1 actually affect the
∆vaxial? As you can imagine from Figure 1, as θ1 gets bigger, ∆vaxial also increases, since the
particle will spend a longer time in the ~B, and during that time it will feel a force more aligned
with the axis.

OK, now let’s do some math to actually quantify ∆vaxial given a certain ~B,w, e,mex, v, and
θ1. The following math is only valid when 0° < θ1, θ2 < 90°. As you can see from Figure 1,

∆vaxial = v cos θ2 − v cos θ1 = v(cos θ2 − cos θ1) (15)

Now let’s find θ2 in terms of the other terms we know. First , using some similar angles (drawn
in the Figure), we can get it in terms of the radius of curvature and θ1.

w = y1 − y2 = R cos θ1 −R cos θ2 = R(sin θ1 − sin θ2) (16)

From here we can find R using the Lorentz force and centripetal acceleration. We drop the
vectors and just use magnitudes halfway through because ~v is perpendicular to ~B

~F = m~a (17)

e(~v × ~B) = m
v2

R
în (18)

evB =
mv2

R
(19)

qeB =
mv

R
(20)

⇒ R =
mv

eB
(21)

Combining this with (16), we can find an expression for θ2:

w = R(sin θ1 − sin θ2) (22)

⇒ θ2 = sin−1(sin θ1 −
w

R
) (23)

θ2 = sin−1(sin θ1 −
weB

mv
) (24)

plugging this back into (15), we can find the fractional increase in impulse ∆vaxial

v . The last
step uses the trig identity cos(sin−1(x)) =

√
1− x2:

∆vaxial = v(cos θ2 − cos θ1) (25)
∆vaxial

v
= cos(sin−1(sin θ1 −

weB

mv
))− cos θ1 (26)

=

√
1− (sin θ1 −

weB

mv
)2 − cos θ1 (27)

Let’s analyze this expression a bit. The weB
mv term is related to the rate at which the particle curves.

As it gets bigger, the particle curls faster, and ∆vaxial

v increases. When the radius of curvature is
the same as the width of the slab (R = w), then weB

mv = 1. In this situation, if we shot the particle
into the bottom of the slab at an angle of θ1 = 90° (parallel to the surface of the slab), then the
particle would curl around a quarter of a circle and exit perfectly vertically, and all of it’s velocity
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Figure 2: The increase in impulse from a particle traveling through a slab of uniform slab of
azimuthal magnetic field at several different incident angles. The width of the slab is assumed to
be 10cm and the velocity of the xenon ions 50 km/s

would be converted from horizontal to vertical, so ∆vaxial

v = 1. We don’t want to make weB
mv any

larger than 1, or we will be turning the trajectory back to the side. The extreme other end of this is
when weB

mv = 0, which happens when there is no magnetic field or the width of the slab is 0. Then,
the particle isn’t curled at all, and the entire expression simplifies to 0 (using 1− sin2 x = cos2 x).

What values of weB
mv could we reasonably expect to create? Let’s say that our slab is 10 cm

thick, which is already a fairly thick ~B to create. Then

weB

mv
= B (6.979× 108 teslas−1) (28)

With the radius of curvature caused by this weB
mv , in Figure 5.2 we can see the impulse boost caused

by a ~B of varying strength at a few different incident angles. As expected, ∆vaxial

v is larger for a
given B at larger angles. Also, the maximum amount of impulse boost is at these large angles.
What this means in a practical sense is that if we are actually trying to implement a magnetic lens,
and want to get the best bang for our buck (largest ∆vaxial

v for a given strength of ~B), we should
place it in the locations within the exhaust plume that contain ions traveling as much off-axis as
possible.

Where in the plasma plume does this occur? Near the outlet of the thruster it is possible to
model the particles as traveling in a straight line from a point source a little ways behind the
thruster. If you take a cross section radially at any axial distance from the thruster, the axial
component of the current density is a normal distribution. [HSH+12]. This is plotted in Figure
5.2 . Since we are assuming that every particle has the same charge and that they are all traveling
at the same speed, the current density is proportional to the the actual density of particles. Thus,
when choosing the best location for our magnetic lens, we should try to place it in a location that
has the best combination of high density and high angle.

6 Engineering electromagnets.

6.1 Proposal: Implementing Toroid coil at thruster to focus divergent
ion beam

Upon initial inspection, a Toroid apparatus seems capable of roughly fitting the force profile de-
scribed in section 5.1. Consider the arrangement below:
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Figure 3: The current density at different positions within the plasma plume. Generated from
the assumption that the current density in the axial direction forms a gaussian distribution over a
radial cross-section, and that particles travel in a straight line from a point source.

Figure 4: Ion thruster with hollow toroid at surface.
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The immediate advantage of using a toroid is that the magnetic field is almost entirely contained
within the coils so interference with the plasma confining fields in the ionization chamber is unlikely.
Notice that the Toroid only needs to cover sections of the beam where we found the dispersion forces
were high, leaving the densely populated center unobstructed by any new material. Additionally,
we know the field in a Toroid is given by:

µoNI

2πr
φ̂ (29)

This would seem to be a useful relation because, if we adjust the number of coils and current
properly, we can roughly map the 1/r magnetic field to the r exp(−r2/a) force profile we prescribed
in section 5.1.

Figure 5: toroid field strength compared to force profile

Keep in mind that we only care to put the toroid over a particular interval (perhaps from 10cm
to 15cm), so we only care about part of the fit over a particular interval. In theory, two or three
toroids of different strength could be put at incremental radii to better fit the force profile. The
toroid seems among one of the best options for an ’at the thruster’ magnetic collimator, but its
shortcomings likely prevent it from being of much practical use. The most obvious shortcoming of
the toroid is that it is a physical obstacle for the ions to collide with as they leave the acceleration
grate. Collision rates with the toroid can be mitigated by reducing the number of coils so as
to decrease exposed surface area, but only with great losses to the electromagnet’s efficiency.
Whatever field strength is lost in reducing the coil numbers must be made up for by increasing the
current which in turn will result in heat losses.

Beside from the difficult balancing between toroid efficiency and ion-toroid collisions lies the
issue of toroid corrosion. With such high exposure to the high energy ions coming from the thruster,
the lifetime of such a device likely disqualifies it from being implemented in a thruster design. It
would be a difficult task to shield the toroid from these ions in a way that didn’t further obstruct
the ion’s path or hurt the magnitude of the toroid’s field.
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6.2 Proposal: Implementing plasma lens to focus the divergent ion beam
beyond thruster.

For the case of a magnetic collimator beyond the thruster, one possible solution is to use a plasma
lens to reduce the beam divergence. An electrostatic plasma lens is placed at a certain distance
outside the grids, in order to focus the ion beam, so that the Gaussian profile of the beam becomes
narrower after passing through the lens. That is, the angle from the centerline of the normal
distribution of the current density decreases. This packs or focuses the ions into a more tightly
Gaussian packet, and also increases the current density in the center of the profile. The net effect
of this is to increase the momentum of the ions in the direction of the thrust axis, so that the
thrust increases. [GRF11].

The plasma lens operates on the principle of creating a region of crossed electric and magnetic
fields using a magnetic coils and electrodes [spa14]. As the ion beam passes through this region,
the ions are accelerated by the electric field so that they are focused to a point. [GRF11]. Figure
3 [GRF11] shows the setup:

Figure 6: set up to use plasma lens to collimate and/or focus the ion beam

The plasma lens generates a magnetic field as a protruding "outward spiral", as shown in figure
4.[GRF11]
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Figure 7: magnetic field line of the plasma lens. Z is the distance along the thruster axis. R is the
radial position at which the ion trajectory intersects the plane of the Plasma lens.

The magnetic field of the plasma will lens cause the ions to focus, by the Lorentz force law.
This in turn will decrease the average half angle divergent beam. Although it seems that this
implementation might be beneficial in generating more thrust, the system is of less practical value
due to some reasons:

• The plasma lens must not be placed immediately above the thruster, and at some distance
away from the thruster. This is because the magnetic fields from the plasma lens mess up the
magnetic fields inside the thruster. As a result, the peak ion current density, and the discharge
current density will decrease. But when we place it at some radii away from the thruster, the
drawback of that is, it will not be able to enclose all of the plume, and only a portion of the ion
current will be able to pass through the plasma lens and get focused. It might be possible to
increase the field of the plasma lens, and placing them close to the grids, but the thruster channel
configurations would have to be changed, so that the magnetic field from the plasma lens does not
affect the fields inside the channel.[GRF11]

• The decrease in the half angle for the beam that goes through the plasma lens might not
be significant. This could also be due to the fact that the Plasma Lens electrode depletes the
electrons in the plume. This will, then, cause the plume to diverge after the plasma because of
space charge repulsion. We might need to add another cathode, after the plasma lens, to solve this
problem.[GRF11]

• Although the power consumption of this setup could be decreased by collecting less current,
which could be implemented by reducing the size of the electrode, or by increasing the radius of
the plasma lens, the power consumption of the electrodes will outweigh the increase in the thrust.
This makes this design practically less feasible.[GRF11]
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7 Discussion
After Developing spacecraft rocket equations, we come to the conclusion that it is the cos θ term
in the thrust that actually will increase the thrust of the spacecraft. We then came up with
engineering solutions that would generate magnetic fields that will decrease theta, and hence
increase the thrust. However, after analyzing different ways to generate a magnetic fields outside
the thrust chamber, in order to make the outgoing divergent beam more uniform, we conclude
that it is not practical to generate such a magnetic field. This is because we found, through our
research and analysis, that the thrust to power ratio will not increase as much and, in some cases,
may even decrease. This limits the practicality of using magnetic fields to collimate the ion beam.

• We proposed a solution that if we use plasma lens outside the thruster, we might be able to
increase the thrust by reducing the angular width of the Gaussian ion beam. However, we were
not able to carry out a quantitative discussion, as to how much the lens will be able to focus the
ion beam, and how much additional power is required to operate the plasma lens. This is primarily
due to the fact that we do not know how far away to put the lens from the thruster, so that it will
not mess up with the magnetic configurations of the inside of the thruster chamber. Generally,
we found through our research that the electrodes consume more power than the plasma lens
can increase thrust. Power losses outweigh thrust increase. One of the main reasons is that the
current that electrode draws is not just due to the ion current, but some other phenomenon, too.
[spa14]. Therefore, we cannot accurately determine how much power the electrodes will draw. It
will,nevertheless, be a good idea to optimize the distance the plasma lens is placed from the thruster
(without messing the inside configurations), figure out exactly how much of the ion beam passes
through the lens, ( while the Gaussian ion beam profile is still intact and has not totally spread,
using the current density profile calculations), and determine either experimentally or through a
numerical simulation as to how much the beam’s angular width decreases, after passing through
the lens, by changing the magnetic fields and the electrode potential. And then finally compute
the thrust to power ratio of the system to determine whether or not it is practically feasible.

• Similarly, the toroid also presents physical challenges because it is a physical obstruction in
the way of the ion beam current. This makes the toroid geometry actually not practical because,
even though it is collimating the ion beam, it is also decreasing the thrust, which is exactly the
opposite of what we want in the end.

• Our paper focused on increasing the thrust, by decreasing the divergence of the beam. But
that is not the only advantage it offers. Depending on the structure of the spacecraft, reducing
beam divergence will decrease the sputtering affect, that will in the long run increase the lifetime
of the grids and the spacecraft in general.

8 Appendix

8.1 Thrust equation

Consider how the thrust of the spacecraft is related to the exhaust velocity.The thrust, T, is given
by the rate of change of momentum. [GK08]
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T = ṁvex (30)

Where m is the mass of the spacecraft at any time t, and vex is the exhaust velocity of the
ions coming out of the final grid. For Xenon ion thruster, the ions are accelerated through a high
electric field between the grids. Therefore, the velocity of these ions is much greater than the
velocity of any neutral Xenon particle that might escape out of the grids. Hence,

T ≈ ṁivi. (31)

where ṁi is the mass flow rate and vi is the ion velocity. By the law of conservation of energy,
the work done by the field on the Xenon ions must be converted into the kinetic energy of the ions.
Therefore,

Mv2
i

2
= qVb.

vi =

√
2qVb
M

(32)

where Vb is the potential difference between the plates and q is the charge on the Xenon
ions.Also, the mass flow rate is related to the ion beam current, by [GK08]

ṁi =
IbM

q
(33)

where Ib is the beam current, M is the mass of the ions, and q is their charge. Now, if we
substitute equation (32) and equation (33) into equation (30), we get equation (1).

8.2 Correction factor for multiply charged species

If the beam contains only singly and doubly charged ions, then, the total beam current is given
by: [GK08]

Ib = I++ + I+ (34)

where I+ is the singly ionized, and I++ is the doubly ionized species. We define the correction
factor, α as:

α =
1 + I++

√
2I+

1 + I++

I+

(35)

where I++

I+ is the fraction of the doubly charged Xenon ion current in the beam.
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8.3 Specific impulse

The specific impulse for any thruster is given by: [GK08]

Isp =
vex
g

(36)

Similarly as for thrust, substituting in the ion velocities, and incorporating angle correction,
presence of doubly charged species, and propellant utilization efficiency, we are able to get equation
(3).

8.4 Code to generate figures
8.4.1 Figure 5.2

Mathematica

v = Quantity [ 5 0 , "KilometersPerSecond " ] ;
q = Quantity [ " ElementaryCharge " ] ;
m =ElementData [ "Xenon" , "AtomicMass " ] ;
k := w q B / (m ∗ v )
k / . w−> Quantity [ 1 0 , "Centimeters " ]
dvOverV = Sqrt [ 1 − ( Sin [ theta ] − k )^2 ] − Cos [ theta ] ;
dvOverVProp = dv / . B−>Quantity [B, "Tes las " ] ;
the ta s = {Pi /8 , Pi /4 ,3 Pi /8 , Pi /2} ;
func = dvOverVProp / .{ theta−>thetas , w−>Quantity [ 1 0 , "Centimeters " ] } ;
p = Plot [ func , {B, 0 , . 8 } , PlotLabels −>"\[Theta]="+ thetas , AxesLabel−>{"B ( t e s l a s )" , "\ [ Cap i ta lDe l ta ] v/v "} ]

8.4.2 Figure 5.2

Mathematica

axialComp:= PDF[ NormalDistr ibut ion [ 0 , y∗m] , x ] ;
radialComp = axialComp ∗ ( x/y ) ;
v e l = {radialComp , axialComp } ;
VectorPlot [ v e l / .m−>.5, {x ,−6 ,6} , {y , 2 , 5 } , FrameLabel−>{"r ad i a l d i s t anc e " , " a x i a l d i s t anc e "} , VectorScale−>Large , PlotLabel−>"Pa r t i c l e V e l o c i t i e s " ]

8.4.3 Figures 1

Python:

import matp lo t l i b . pyplot as p l t
import numpy as np
import seaborn

a = 1
b = (35/2)∗∗2
c = 1
P = 100

r = np . l i n s p a c e (0 ,35 ,100)
rho = a∗ r ∗np . exp(−r ∗∗2/b) + c
B = P/ r

f i g , ax = p l t . subp lo t s (1 )
ax . p l o t ( r ,B, ’−−r ’ )
ax . p l o t ( r , rho , ’−b ’ )
ax . s e t_y labe l ( r ’ $D i spe r s i v e ␣Force$ ’ )
ax . s e t_x labe l ( r ’ $ rad ius (cm) $ ’ )
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ax . set_ylim (0 , 50)
ax . s e t_y t i c k l a b e l s ( [ ] )
#ax . s e t_ x t i c k l a b e l s ( [ ] )

p l t . show ( )
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