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Abstract

The stability of the sail, the precision of the initial trajectory, and the materials necessary for the design

are all analyzed in an attempt to model a nanocraft's journey to Proxima Centauri B. Approximations and

assumptions are made to simplify the issue of sail stability, which is the most di�cult part of the analysis.

Materials that are suitable for the sail � at least partially � are currently available. The requirements on the

sail are that its emissivity, ε, re�ectance, η, and absorptance, α, meet the following condition: εη
α ≥ 6.6 ·103.

The sail is assumed to be a rigid body with high re�ectance, so that Newton's Laws and Euler's equation

can be used to describe its motion. Assuming a constant laser beam shape over the area of the sail, these

di�erential equations can be found analytically. Numerical simulations are performed to analyze the stability

of the craft, suggesting stability for angular perturbations on the order of 2 ·10−6 rad. The maximum initial

transverse perturbation is 10 µm. If Proxima Centauri b is to be reached within the Earth-Moon distance,

a 10 nrad maximum angular perturbation is needed. The laser beam would have to be aligned with the

sail according to these speci�cations. Although these results suggest that highly accurate trajectories are

necessary, the model proposed is conservative, in the sense that it does not allow the laser beam to stabilize

the sail.
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1. Introduction

1.1. Approach

A model will be developed for the motion of a light
sail accelerated by a high power, 50 GW laser. The
data given in the problem statement will then be
taken as the initial conditons for this initial value
problem. Whatever parameters characterize a light
sail are analyzed in an attempt to answer the main
problem: Is reaching Proxima Centauri b feasible
with reasonable accuracy and 10-20 minutes of ac-
celeration time? If so, what tolerances exist for the
accuracy of the laser beam and the design of the sail
in order to achieve this?

1.2. General assumptions

Since [1], in 1984, attempts have been made to de-
termine ideal sail materials for laser sailing. An ideal
material would have a combination of properties that
does not exist in any available materials. Therefore,
the material of the sail was assumed to be heat resis-
tant, ultra-thin � on the order of 100 nm, and light
� weighing 0.5 g for an area of 10 m2. This material
was assumed to be perfectly re�ecting. Due to the
large amount of energy imparted to the sail, imper-
fect re�ectors would not allow the craft to accelerate
to the target speed.

Furthermore, the sail is assumed to be a rigid body
that retains its shape. The nanocraft, also weighing
0.5 g, is connected to the sail by rigid, strong, light
connectors. In reality, these connectors � and their
respective moments of inertia � would have to be
accounted for to produce an accurate model of the
acceleration of the craft.

The di�erential equations that are derived assume
that the sail is solely under the in�uence of the laser's
radiation, ignoring gravity of the Moon, Earth, and
Sun. The sail is to be released above the Earth's
atmosphere, however, so escape velocity would not
have to be taken into account.

Although any di�raction-limited, coherently com-
bined laser beam will be a gaussian � to achieve
the highest power per unit area, a �at-topped beam
shape has been used for the analysis in this paper. If
a smaller width than the FWHM value actually hits
the sail, then this is not a bad approximation; how-

ever, in practice, the beam will be hitting the light
sail up to its �rst airy disk for the highest possible
power e�ciency.

2. The physics of light sailing

2.1. About laser beams

In order to achieve laser powers of 50 GW, coher-
ent combination of mode-locked, pulsed laser beams
is necessary. This is usually done � and has been
achieved � with lasers of wavelength λ = 1064 nm [2].
However, as will be shown, this wavelength makes no
di�erence on calculations of acceleration.

According to DeBroglie, the momentum imparted
by a photon is p = h

λ and its energy follows E = pc.
Likewise, a laser beam with power P is emitting P/pc
photons per unit time. That means that the mo-
mentum of a laser beam per unit time is simply P/c.
When this laser beam hits a surface the momentum
of the re�ected photons should also be considered.
Thus, the momentum per unit time exerted on this
surface is 2P/c.

2.2. About light sails

This section will mostly follow [1]. If one considers
the results of the previous section and applies New-
ton's second law, then it is straight-forward to �nd
the following expression for the acceleration of a light
sail:

a =
2ηP

mc
(1)

where P is the power that arrives to the sail, η is the
re�ectance of the material and m is the total mass
of the spacecraft. Although mass distribution will be
discussed later, the system will consist of a nanocraft
(ideally a light, wafer-scale chip) �xed by four con-
nectors to a light sail. A representation of this design
can be seen in Figure 1. The sail is assumed to be
spherical in this report (unlike in Figure 1), with a
large radius R. By taking the limit R −→ ∞, the
�at sail case is recovered, which has been proved to
be unstable under realistic conditions. Literature on
this topic has details about conical and hyperbolic
sails, which will not be covered here [5][?].

Writing m = mls +msc as a sum of the masses of
the sail and the craft, and nowmls = ρAd, where ρ is
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Figure 1: Schematic representation of the nanocraft and laser
beam direction. [3]

the density of the sail material and d is its thickness,
the acceleration is:

a =
2ηP

(msc + ρAd)c
(2)

Some considerations may be derived from this for-
mula. First, this formula puts a limit on the maxi-
mum acceleration one could achieve with such a sys-
tem. Until now, loss of power due to heating of the
material has not been considered. Also, according to
[1] if the goal is to optimize the sail �lm thickness,
the payload and the structure mass in the e�ective
sail material density could be included, so that Equa-
tion 2 becomes:

a =
2P

Ac

η

ρd
(3)

where the last factor only depends on the parameters
of the sail material.

According to the above equation, in order to max-
imize a, a thin sail from a low density material is
needed. Note, however, that for a very thin material
most of the power passes through the sail and is then
wasted. Additionally, some power will be absorbed,
and, if the absorptance of the material is too high,
power will also be lost here. Assuming that this ma-
terial does not have to be a perfect black body, the
absorbed power αP has to be equal to a fraction of
the radiated heat 2σAεT 4, where α is the absorp-
tance, ε is the emissivity, σ is the Stefan-Boltzmann
constant, and T is the operating temperature of the
sail. Equation 3 becomes:

a =
4σ

c

εηT 4

αρd
(4)

Equation 4 can be used to compute the accelera-
tion of a light sail given the power of a laser beam
array. This will give a �rst estimation of the possible
velocities, which will be of the order of 0.2c. More-
over, Equation 4 can be used to discuss the materials
required to build a suitable light sail.

2.3. Relativistic velocities

According to Equation 2 and considering the rela-
tivistic case where p = mcγβ, one can write:

2ηP

mc
=
dp

dt
= mcβ

dγ

dt
+mcγ

dβ

dt
(5)

following [4]. Considering the de�nition of the
gamma factor one derives the di�erential equation:

2ηP

mc2
=
dβ

dt

1

(1− β2)2
(6)

Integration yields an analytical solution for t:

t =
mc2

4Pη

[ β

1− β2
+

1

2
ln
(1 + β

1− β

)]
(7)

which can be inverted to �nd β. Despite other intu-
itive considerations, this will be the main evidence
that a large error is not made by not considering
special relativity.

2.4. Light sailing dynamics

One of the main problems is to achieve a sail
with a beam-riding stability without need of active-
feedback of the spacecraft. In this section,[3] and [5]
will be followed to determine the equations of mo-
tions of the spacecraft. A Cartesian reference frame
(X,Y, Z) with its origin at the center of mass of the
spacecraft and its Z-axis in the direction of the cylin-
drical symmetry axis of the sail will be used. This
choice of Z is important, as it makes the used ref-
erence frame (RF) a non-inertial RF moving along
the axis of the laser beam with the acceleration given
by the laser-imparted force. One of the assumptions
made is that the sail behaves like a rigid body, so
that its motion can be described with both New-
ton's second law (Equation 8) and Euler's equation
(Equation 9):

F = mẍ (8)
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Iω̇ + ω × Iω = τ (9)

where ω is the angular velocity and I the inertia
tensor of the sail. First, Ixx = Iyy because of
the cylindrical symmetry of the problem and also
Iij = 0 if i 6= j, since the principal axes are being
used. Then a simple calculation gives,

Ixx = Iyy = I = mlsL
2
c +msc(L− Lc)2 (10)

where L is the distance between the nanocraft and
the sail and Lc, between the center of mass of the
sail and the center of the nanocraft.
By applying Equation 2 � supposing an ideal re-

�ectance � to an element of the sail surface, the force
applied by the laser beam can be determined:

F =

∫
S

2p(x) · n̂(x)

c
n̂(x)dS (11)

with p(x) being the bean power �ux at a point x
in the surface of the sail, S the light sail area, and
n(x) a normal unit vector to this surface at x. Con-
sidering the constant direction of p(x): parallel to
the z-axis and perpendicular to the Earth surface
where the laser is assumed to be installed, this im-
plies p(x) = p(x)ẑ.
Similarly the expression for the torque applied to

the beam can be found using τ = r × F :

τ =

∫
S

2p(x) · n̂(x)

c
(r(x)× n̂(x))dS (12)

Here, r(x) corresponds to the distance between the
center of the sail and a point x on the sail's sur-
face. From basic geometry, one can see that it can
be computed as r = (x, y, Lc −R+

√
R2 − x2 − y2)

The main purpose of the dynamical analysis is to
study small perturbations in the x and y axis. As
a consequence of these perturbations, two rotations
of the center of mass de�ned by the angles θx and
θy, which correspond to rotations about the x- and
y-axes respectively, are caused. Using the gradient

on the surface of a sphere, n̂ = ( xR ,
y
R ,

√
R2−x2−y2

R )

can be found, and so p(x) · n̂(x) = p(x)

√
R2−x2−y2

R
where R is the radius of curvature of the sail. It is
also easy to see that a small displacement ∆ in the
X-direction will trigger a rotation about the Y-axis

Figure 2: Schematic representation of the sail and the
nanocraft. The light sail is spherical with a large radius R. In
this scheme, the direction of Z is taken in the direction of L.
X and Y are perpendicular to Z.

(θy). This is equivalent to motion in the Y-direction
and rotation about the X-axis because of the sym-
metry of the sail and the coupling between X and
θy in the equations of motion for Fx is the same as
the coupling between Y and θx in the equations of
motion for Fy. Only one displacement (in the X-
direction) will be solved for, since a displacement in
Y will be equivalent. Solving for motion along the
Z-axis is trivial because the torque is zero about Z.
Thus, Z is governed by a constant acceleration which
makes it depend only on t2.

Using the approximation for small angles,
sin θy ≈ θy, ∆ = X + θyLr where Lr =√

(
√
R2 − a2 + Lc −R)2 + a2 is the distance be-

tween the rim and the center of mass of the sail. A
schema of L and a can be found in Figure 2. Now, the
force in the X-direction can be computed, using the
�ux of the beam. As it has been mentioned, a gaus-
sian beam model for the laser will not be used, with a
constant one in its place (Equation 13). This allows
the solution of the integrals analitically and hence
to make explicit the set of di�erential equations of
motion. The power of the beam can be assumed to
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be

p(x) =


p0 if 0 ≤ x2 + y2 ≤ a

0 otherwise
(13)

Such an illumination model allows dS =
∆dy R√

R2−x2−y2
. This is because there is a

constant power �ux over all the area except the rim
of the sail. Then, the force is simply:

Fx =

∫ +a

−a

p0∆

R
xdy =

p0∆

R

∫ +a

−a

√
a2 − y2dy

= −1

2
Frad

X + Lrθy
R

(14)

where the de�nition Frad = 2p0πa
2 is used. Note

that this is precisely the force coming from the laser
beam that was computed in the last section, which
is assumed to cause all the acceleration. The same
can be done for the torque:

τy = 2p0∆
(Lc
R
− 1
)∫ +a

−a
xdy

= −1

2
Frad

(Lc
R
− 1
)(
X + Lrθy

)
(15)

Then, Newton's second law and Euler's equation can
be written as:

mẌ = Fradθy −
1

2
Frad

X + Lrθy
R

(16)

Iθ̈y = −1

2
Frad

(Lc
R
− 1
)(
X + Lrθy

)
(17)

In the �rst one, an extra term has been added which
represents the additional force created due to the
angle θy. If a

2 is assumed to be much less than R2,
Lr = Lc.
Taking the limit R −→ ∞ the �at sail model is

recovered, governed by equations:

mẌ = Fradθy (18)

Iθ̈y =
1

2
Frad

(
X + Lrθy

)
(19)

2.5. From equations of motion to Alpha

Centauri

If the goal is to arrive at Proxima B in Alpha Cen-
tauri at a closer distance than that between the

Figure 3: Schematic view of the range of allowed trajectories
to Proxima B, located at (b). Earth is located at point (a).

Earth and the Moon, motion in the x and y direc-
tions once acceleration stops should be considered.
If in this instant of time the angles θx and θy are too
large, a close enough approach to Proxima B cannot
be guaranteed.
Figure 3 can be used to better understand this

problem. In it, θmax represents the maximum angle
the craft can have with respect to the x or y axis
when the acceleration is stopped after t ∼ 10 min.
If the distance between the Earth and the Moon is
ε ∼ 400, 000 km the condition for achieving the goal
is:

θmax ≈ sin θmax ≤
ε

4.25 years · c
≈ 1·10−8 rad (20)

Thus, considering the perturbations in the light sail,
the maximum error in the laser beam can be char-
acterized. In order to satisfy this constraint, a great
accuracy in the laser beam is required.

3. Model analysis and results

3.1. Feasibility of light sailing

A �rst estimate will show that nearly c velocities are
possible with such a laser beam (ignoring relativity).
As discussed in previous sections, the momentum im-
parted by a 50 GW beam each second is

5 · 1010

c
· 2 J =

1

3
· 103 kg

m

s
(21)
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where η, the re�ectance, is assumed to be 1. Assum-
ing the sail is perfectly aligned with the laser beam
(i.e. with no perturbations), the sail will accelerate
at a constant rate. This acceleration will be given
by

1
3 · 103 kgm

s2

0.001 kg
=

1

3
· 106

m

s2
(22)

If this acceleration is maintained for 10 minutes,
the craft will achieve a speed of

1

3
· 106

m

s2
· 600 s = 2 · 108

m

s
(23)

without taking into account relativity. The
gamma factor, γ = 1√

1−β2
, is only a 0.5% correction

for v = 0.1c, where c is the speed of light. Therefore,
up to 0.1c, relativity does not need to be taken into
account to still retain 99% accuracy. Past this speed,
γ increases to 1.02, requiring a 2% correction. Due to
the other assumptions made, this is not considered to
a�ect the results of this paper signi�cantly, so it has
been ignored. Since the craft needs to reach a target
speed of 0.2c, any acceleration past this (which will
be greatly abated when v → 0.5c) is inconsequential,
as this is an ideal case.

The non-ideal case is much more complex, includ-
ing many parameters. According to [1] the upper
limit of acceleration of an object can be derived from
Equation 4. In [1], Forward claims that aluminum
is the best known material for the sail; however, its
maximum operating temperature of 600 K limits its
uses. If aluminum (ε = 0.06, η = 0.82, α = 0.135,
ρd = 2.71 g

cm3 ) was used for the design proposed in
this paper, it would limit the acceleration to 1.32 m

s2
.

This is unacceptable, as the craft would be unable to
reach relativistic speeds in a short time. An upper
limit on the desired acceleration � to reach 0.2c in
10-20 minutes � would be a = 0.2c

600 s , a = 1 · 105 m
s2
.

The issue with aluminum is its low emissivity, caus-
ing it to heat up � and therefore reach its tempera-
ture limit � too quickly. The following analysis will
attempt to determine an ideal material for the sail,
according to the constraints that the design in this
paper requires.

The sail design proposed here requires a low sur-
face density. Since a total sail weight of 0.5 g is
required for a surface area of 10 m2 the total mass

per unit area is ρd = 5 · 10−5 kg
m2 . The density of

such a material would then be ρ = 5 · 103 kg
m3 . This

is reasonable, as the material would be only 5 times
as dense as water (but would need to be thinned to
10 nm). Materials that are less dense could be used
as a thicker sail, as long as they meet the other re-
quirements. Assuming an operating temperature of
1000 K, a model can be built for the constraints on
the emissivity, re�ectance, and absorbace:

εη

α
≥ 6.6 · 103 (24)

These requirements are not out of reach. Accord-
ing to [6], multi-layer dielectric materials currently
exist that can be coated to result in 99.995-9% re-
�ectance for a speci�c laser line (in this case 1064
nm). This is two orders of magnitude better than re-
quired by the above analysis, allowing the constraints
on absorptance and emissivity to not be as strin-
gent. Of course, designing a material that has all
these properties � high re�ectance, low absorptance,
high operating temperature, and high emissivity � is
di�cult.

3.2. Accelerating to relativistic limit

Using Equation 7, it can be shown that all the equa-
tions used are not within the relativistic limit. In
Figure 4 this equation is plotted.

It can be seen that for the considered mass of 1
g, speeds up to 0.2c are achieved in a reasonable
amount of time. Obviously, as m increases � still
under a few grams, more time is needed to achieve
higher speeds, so spacecrafts are non-relativistic for
longer periods of time.

As shown for β � 1, the constant acceleration
behavior is recovered, as treated earlier. This can
also be shown from Equation 7. When β → 1:

β

1− β2
→ β, ln

(1− β
1 + β

)
→ 2β (25)

thus recovering Equation 2.

3.3. Stability analysis

In this section the system of ordinary di�erential
equations (Equation 16 and Equation 17) that deter-
mines the dynamics of the spacecraft has been solved
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Figure 4: β versus time, considering relativity. Di�erent
masses have been plotted. Lower �gure shows constant ac-
celeration until β < 0.2.

numerically. The parameters used in the simulation
are a = 200 cm and L = 2000 cm; both masses mls,
msc have been taken to be the same � according to
[6] this is the optimal con�guration � so Lc = L/2.
Also, if a2 is much smaller than R2, then Lc = Lr. In
an idealized case, it has been shown that it is possible
to reach velocities of vmax = 0.2c. Now, one might
wonder what force the spacecraft needs to achieve
such velocities. The assumption that η = 1 when
deriving the equations of motion still holds. Sim-
ple calculations for ∆t = 600 s give an approximate
value of Frad = 102 N, an upper limit on the force
required.

3.3.1. Flat sail

If R → ∞, the sail becomes �at. The intuitive
idea behind the �at sail instability is that any non-
uniformity in the beam intensity or alignment of the
sail will cause a torque with no restoring force; hence,
it will not be at all stable. The plot for this simula-
tion is not shown, because the velocities in the x-axis
exceed the relativistic limit. Therefore, the deriva-
tions made are not valid anymore. Regardless, the

simulations still suggest an unstable behavior of a
�at sail.

3.3.2. Spherical Sail

Figure 5 shows the components x and z of the motion
of the light sail for a spherical sail with radius of
curvature R = 1000 cm. There is no torque on the
z-axis, so the shape of the function of motion of the
sail is going to be well approximated by Equation 2
(with η = 1). This is reasonable, since the kinetic
energy associated to x and y axes is not comparable
with the total kinetic energy, as will be shown. Note
that z has a parabolic behavior.

The simulation has been run for two di�erent per-
turbations, �rst for δx = 0.001 cm and θy = 0.001
degrees, getting an amplitude of 2 cm and then; for
δx = 0.0001 cm and θy = 0.0001 degrees, getting
an amplitude of approximately 0.2 cm. Note that as
one may expect, bigger initial perturbations imply
bigger amplitudes. This means that the more per-
turbed the system is initially, the greater the varia-
tions of the coordinates on the x-axis (and similarly
on the y-axis). These variations are re�ected in the
value of the amplitude of the oscillations. Simula-
tions also show that for larger initial perturbations
no acceptable amplitudes are obtained, showing an
unstable behavior for the spacecraft at those initial
conditions.

The energy absorbed by these perturbations is re-
lated to the kinetic energy of the oscillatory motion
according to 〈T 〉x = 1

2Iω
2. However, there are os-

cillations in both the x-axis and y-axis. Thus, an
estimation for the kinetic energy of one oscillation
is 〈T 〉 ≈ 600J , and the kinetic energy per second
is around 7000W , which is negligible in comparison
with the power of the laser beam (50 GW). This al-
lows the consideration of Equation 2 as an equation
of motion for z.

3.4. Accuracy of the system

Once the craft stops accelerating after a time of 10
min, it has traveled a distance ∼ 107 km, as shown in
Figure 5. This is negligible compared to the distance
between the Earth and Alpha Centauri, so it can be
assumed that the sail is still at Earth (though out
of its gravitational �eld). According to Figure 3, a
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Figure 5: Spacecraft position for small initial perturbations in
X and θy. Simulation results.

really small angle in the x or y axis is needed in order
to achieve the goal of �ying by Proxima Centauri B
within the desired distance. This has been found to
be of a great complexity.

The simulation gives a value equal to the initial
perturbation for the maximum deviation of the x-
axis � i.e 0.0001 or 0.001 degrees. These angles cor-
respond in the best case to an angle of the order of
2 · 10−6 rad.

As seen in the introduction, the needed accuracy
is on the order of nrad. Simulations show that this
could be achieved by reducing the initial perturba-
tions in θx by two orders of magnitude, but leaving
constant the initial perturbations in x. A laser beam
capable of this would be able to propel the craft to
Proxima B. Greater errors do not guarantee the suc-
cess of the trip. Simulations also show that the am-
plitude of the oscillations are small enough to keep
the spacecraft stable; hence, the needed accuracy is
about 1 − 10 µm for perturbations in x and of the
order of nrad for perturbations in θx.

Some considerations can be made regarding the
power of the laser beam. It has been assumed that
in order to achieve the desired velocities, the system
should receive a force in the z-direction of around 100
N. This leaves unused more than half of the available
power. Thus, such an ideal system where η = 1, and
none of the power passes through the sail or is oth-
erwise lost has signi�cant margin for error. Many
papers argue that the beam would not be able to
be completely enclosed by the sail for the entire du-
ration of the acceleration [6][4]. These results show
that this is not a signi�cant issue � as long as half
the power hits the sail, on average.

4. Conclusions

4.1. Discusion of the results

The ability of such a system to achieve nearly c ve-
locities in a reasonable amount of time was one of the
primary concerns. At a �rst estimate of η = 1 and a
perfectly aligned laser with no perturbations, results
show that up to 0.2c speeds can be easily achieved.
Another important issue was the e�ects of relativity
when reaching velocities on the order of the speed of
light. However, it has been shown that the case stud-
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ied here can be assumed to be non-relativistic. If the
mass of the craft is increased, then the spacecraft is
only more of a non-relativistic system.

The material of the light sail was also considered.
Due to an idea purported by [1], the properties of
aluminum were analyzed, but it was determined to
not be a suitable candidate due to its emissivity
and operating temperature. The acceleration nec-
essary to reach v = 0.2c was determined and used
to set constraints on an ideal material for the sail.
The ideal material for a sail should have low sur-
face mass density. Moreover, by assuming an oper-
ating temperature of 1000K, a simple relation that
this material must satisfy can be obtained: Equa-
tion 24. In words, the material needs to have high
re�ectance, low absorptance, high operating temper-
ature and high emissivity. Even though such a mate-
rial could seem hard to manufacture, materials that
satisfy these requirements at least partially are al-
ready available.

Finally, stability of the light sail was considered.
Two models have been considered: a �at sail which
is not stable at all under small perturbations, and a
spherical sail which is stable. For the latter, calcu-
lations were performed approximating the intensity
of the laser beam with a piece-wise function. These
calculations suggest that the amplitude of the os-
cillatory motion in both the x and y axes increases
when the initial perturbation is increased. In order
to plan such an interstellar �ight, a system with ac-
curacy of nrad in θx and of µm in both x and y axes
is necessary.

4.2. Strengths and weaknesses

• Weaknesses

1. In order to achieve maximum power in the
spot generated by a laser beam, a gaussian
beam pro�le would be used [6][?]. This
pro�le would change the calculations for
the stability of the sail considerably. The
calculations performed in this paper would
no longer be accurate.

2. The connectors of the sail to the craft are
di�cult to account for. If they are to be
rigid and strong, then their mass would be
a factor in the calculations of the sail dy-

namics, something which this paper does
not account for.

3. The necessary precision is calculated to
be a less than nrad angular perturbation,
which is most likely not achievable.

4. Uniformity � or lack thereof � of the laser
beam has not been taken into account.

5. Dust impacts during �ight will greatly al-
ter the course taken by the spacecraft. Ac-
cording to [6], a craft on the order of grams
will be perturbed by dust impacts. Al-
though these impacts will not damage the
spacecraft itself, they will cause it to slowly
drift o�-course [6]. If this nanocraft is
around 1 g, as assumed by Lubin, angular
acceleration caused by dust impacts will be
on the order of 10−5 rad

sec , with the direc-
tion depending on the direction of impact
of the dust. This angular acceleration will
destabilize the craft and lead to a drift from
the trajectory. In his paper, Lubin sug-
gests photon thrusters on the craft which
will counteract this small acceleration. If
it is not counteracted, it will lead to ap-
proximately a complete rotation in just one
day. This completely eliminates the possi-
bility of the spacecraft staying on course
for an order of decades without some kind
of on-board correction mechanism, such as
thrusters. Since such a mechanism would
cause a (signi�cant) increase in mass, this
is likely the most detrimental weakness to
this model.

• Strengths

1. The analysis provided through this model
suggests that it is possible for a craft to
achieve speeds on the order of 0.2 c with
the given laser power of 50 GW, and �
with su�cient precision � to reach Prox-
ima Centauri b at a closer distance than
that between the Earth and Moon.

2. As discussed previously, less than half the
total power of the laser is needed to be
used for acceleration. If 50% of the power
is transformed into kinetic energy of the
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spacecraft, then the target of 0.2 c is still
achieved.

3. The materials that are required for the con-
struction of the sail are not readily avail-
able but can be theoretically created and
fabricated in the foreseeable future.

4. The control of the laser pro�le through a
phased laser array could allow it to be used
as a source of extra stability for the sail
[6]. This suggests that this analysis was a
conservative one.

5. The suggested sail design has been proven
to be stable under laser beam conditions
which are not favorable and can be made
to be more stable with manipulation of
the laser beam, as is possible with modern
phase-locked lasers [6][5].

4.3. Future work

More analysis needs to be performed on the ideal
shapes for a laser-propelled sail. Several designs
have been proposed � such as hyperboloids, cones,
spheres, and others, but � due to the possibility of
laser beam shape modi�cation � which of these de-
signs is ideal is unclear. Moreover, there needs to
be a determined ideal balance between accelerating
power and stability of the sail.

The analysis of laser beam shapes for ideal stabil-
ity is crucial to the success of this kind of mission. [6]
suggests that a minimum be created in the center of
the beam to promote stability, while [5] argues that
four gaussian beams on a spherical sail can keep it
stable with initial perturbations of several centime-
ters, which is promising. In either case, more analy-
sis and modeling is necessary in order to assess what
the best shape is for stability of the craft. Assum-
ing an amount of power as given in this problem is
achievable, then perhaps losing some of that power to
a less-favorable (in terms of power e�ciency) beam
shape in order to achieve a more stable craft is nec-
essary.

Due to the high precision required in aiming the
spacecraft towards Alpha Centauri as well as the
problem of dust impacts discussed above, methods
of correcting the craft's trajectory and unwanted ac-
celeration need to be analyzed. Ideally, some kind of

mechanism would be on-board which would be able
to correct the trajectory, suggesting that the weight
of the craft would have to be increased. Detailed
analysis of ultra-light correction systems should be
performed.
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A. Python code for numerical simulation

# Python modules

from numpy import linspace

import random as random

from scipy.integrate import odeint

from math import sqrt , pi, log

import matplotlib.pyplot as plt

from matplotlib import rcParams

rcParams.update ({'font.size': 13})

rcParams['font.family '] = 'sans -serif '

rcParams['font.sans -serif'] = ['tahoma ']

# Equations of motion spherical sail

def light_spherical_sail(y,t,Frad ,Lc,R,m,I):

x, vx, thetay , omegay = y

dydt = [vx , Frad(t)/m*thetay -1/2/m*Frad(t)*(x+Lc*thetay)/R,

omegay , -1/2* Frad(t)/I*(x+Lc*thetay)*(Lc/R-1)]

return dydt

# Equations of motion flat sail

def light_flat_sail(y,t,Frad ,Lc,m,I):

x, vx, thetay , omegay = y

dydt = [vx , Frad(t)/m*thetay ,

omegay , 1/2* Frad(t)/I*(x+Lc*thetay)]

return dydt

# Constants

a = 200 #cm

R = 1000 #cm

Lc = 1000 #cm

m1 = 1/2 #g

m2 = 1/2 #g

m = (m1+m2) #g

L = 2000 #cm

I = m1*Lc**2+m2*(L-Lc)**2 #g*cm^2

F_rad_0 = 10**7 #cm*g/s^2

tim = 10*60 #s

P = 50*10**9 #W

c = 3*10**8 #m/s

eta = 1 #reflectance

def F_rad(x): #Force from the laser beam

if x <=10*60:

return F_rad_0 #+ normal(F_rad_0 /100, F_rad_0 /100) #adding noise

if x >10*60:

return 0

y0 = [0.001 ,0 ,0.001 ,0] #Initial cond set 1

y1 = [0.0001 ,0 ,0.0001 ,0] #Initial cond set 2

yr = [0.0000001 ,0 ,0.00001 ,0] #Initial cond set 3

sol1 = odeint(light_spherical_sail , y0, t, args = (F_rad ,Lc,R,m,I))

sol2 = odeint(light_spherical_sail , y0, t2, args = (F_rad ,Lc,R,m,I))

sol12 = odeint(light_spherical_sail , y1, t, args = (F_rad ,Lc ,R,m,I))

sol22 = odeint(light_spherical_sail , y1, t2 , args = (F_rad ,Lc ,R,m,I))

# solving for different conditions

#Plotting results from ODEs
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fig ,ax = plt.subplots (5,1,figsize =(7 ,12))

ax[0]. plot(t3,z)

ax[0]. set_xlabel('Time (s)')

ax[0]. set_ylabel('z (km)')

ax[1]. plot(t,sol1[:,0],label=r'$\delta_{x} = 0.001$')

ax[1]. legend ()

ax[1]. set_xlabel('Time (s)')

ax[1]. set_ylabel('x (cm)')

ax[1]. set_xlim(0,tim /2)

ax[1]. set_ylim ( -1.5 ,3.5)

ax[2]. plot(t2,sol2 [:,0])

ax[2]. set_xlabel('Time (s)')

ax[2]. set_ylabel('x (cm)')

ax[2]. set_xlim(0,tim /300)

ax[2]. set_ylim (-1,3)

ax[3]. plot(t,sol12[:,0],label=r'$\delta_{x} = 0.0001$',color='orange ')

ax[3]. legend ()

ax[3]. set_xlabel('Time (s)')

ax[3]. set_ylabel('x (cm)')

ax[3]. set_xlim(0,tim /2)

ax[3]. set_ylim ( -0.15 ,0.35)

ax[4]. plot(t2,sol22[:,0],color='orange ')

ax[4]. set_xlabel('Time (s)')

ax[4]. set_ylabel('x (cm)')

ax[4]. set_xlim(0,tim /300)

ax[4]. set_ylim ( -0.1 ,0.3)

plt.savefig('dxbis.eps')

plt.show()

#Solving for flat sail

sol_flat = odeint(light_flat_sail ,y1,t4,args = (F_rad ,Lc,m,I))

fig ,ax = plt.subplots(figsize =(7 ,4.5))

ax.plot(t4,sol_flat [:,1])

plt.show()
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