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Abstract

The use of ion thruster electric propulsion has seen considerable attention recently
for its application in long-distance space travel. Electric propulsion achieves much
higher fuel efficiency due to higher effective exhaust velocities and is therefore ideal
for conserving payload space and minimizing fuel requirements. In this project, we an-
alyze the parameters of the trajectory of an ion thruster-boosted spacecraft as it makes
an orbit transfer from low Earth orbit to orbit around Saturn. We estimate the min-
imum fuel required to make a journey and the duration of the journey by dividing
the trajectory into three regions, each of which are treated as a microthrust two-body
problem: escape from Earth’s orbit, orbit transfer from Earth to Saturn (where the
Sun is treated as the central body), and capture into Saturn’s orbit. In each region,
spiral dynamics are explored and justifications are given for a fuel-minimizing trajec-
tory. Time of flight, fuel required, and velocities are obtained for the boundaries at
each region by numerically integrating their respective equations of motion. For the
heliocentric region, in which the spacecraft traverses from Earth to Saturn, different
thrusting strategies are investigated to determine a most fuel-efficient strategy. Finally,
we estimate a fuel requirement of approximately 58.5% of the total mass and a total
trajectory duration of 20.92 years.
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Nomenclature

ṁ Mass flow rate

µ Standard gravitational parameter of the Sun

νe Exhaust velocity

Isp Specific impulse

m Mass

r Orbital radius

T Thrust
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1 Introduction

The use of ion thruster electric propulsion systems for small probes and, in the future,
manned spacecraft is of great interest. Long-duration ion microthrust engines have al-
ready seen application in missions like Deep Space and Dawn, which were able to achieve
significant changes in velocity over long periods of time while using small amounts of fuel.
Ion thrusters are able to achieve much greater specific impulses than traditional chemical
rocket engines by expelling fuel at a much greater effective exhaust velocity [2].

In this project, we seek to analyze the trajectory of a small 5000-kg spacecraft using an
ion thruster engine as it exits circular low-Earth parking orbit and enters a high circular
orbit around Saturn by estimating the minimum fuel required and the duration of flight. A
direct path is considered first, neglecting the gravitational field of bodies besides Earth, the
Sun, and Saturn. Then, the effects of trajectory-optimizing techniques like thrust profiles
are considered.

2 Background and Approach

We split the interplanetary trajectory of the spacecraft into three regions, each of which
are analyzed separately: escape from low-Earth orbit, orbit raising within the Sun’s or-
bit, and entry into Saturn’s orbit. In each region, only gravitational interactions between
the spacecraft and the central body are considered. This approach is commonly used to
simplify optimization of interplanetary orbits and is similarly used here to simplify the
analysis.

In all three regions, an analysis of spiral motion is required as a consequence of the very
low acceleration. Orbit transfer can be simplified with the assumption of instantaneous im-
pulses, resulting in optimization schemes such as the Hohmann transfer [4](Figure 1).

Figure 1: Hohmann transfer orbit with instantaneous impulses.
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Figure 2: Dawn mission trajectory.

However, with low-thrust acceleration we can no longer make the assumption that im-
pulses to the spacecraft are instantaneous. Rather, we consider the case of a small, con-
tinuous external force on the orbit. This results in a slowly increasing orbital radius as
the thrust is applied to the spacecraft. For instance, the Dawn probe which traveled to
the asteroid belt with microthrust ion propulsion engines traveled in an outward spiral
trajectory in the heliocentric region (Figure 2).

For each region, an analysis of the spiral motion is done with the objective of finding the
mass of fuel expelled and the time elapsed in that region. The weight of the fuel expelled
per second can be computed from the specific impulse:

weight/s =
generated thrust

Isp
(1)

With Isp = 4000 s, the change in mass follows immediately:

dm = −generated thrust
g × 4000 s

dt (2)

The negative sign arises because the mass is expelled from the spacecraft, so the change in
mass is considered negative. As will be shown in the next section, the analyses of Regions
1 and 3 are done by numerically solving coupled ODEs in time, from which the duration of
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the trajectory follows immediately after specifying an end condition, such as a maximum
radius or final energy level.

For regions 1 and 3, a numerical approach is taken to find the exit conditions by directly
solving the differential equations of motion. A number of different approaches exist to
describe the spiral trajectories of orbiting bodies under microthrusts. An analytic approx-
imation can be made for small constant thrusts, which assumes the shape of the orbit lies
very close to a circle. This approximation breaks down as the eccentricity of the orbit
increases towards the exit [3] (Figure 3). Another technique which is used in low-thrust
trajectory optimization approximates the continuous low thrust into a series of periodic
instantaneous impulses [6]. This strategy would make numerical optimization of chang-
ing levels of thrust simpler, but is an unnecessary complication as we seek to estimate the
fuel consumption and flight duration, not the exact optimal trajectory.

Figure 3: Example spiral orbit with increasing eccentricity.[5]

3 Analysis of Trajectory

In this section, the spacecraft trajectory is split into the three relevant regions, and separate
analyses are done for each. For the trajectory in each region, we calculate the mass of fuel
required, the time elapsed, and an ideal velocity as the spacecraft enters or exits the region.
The initial conditions for Region 1 and exit conditions for Region 3 are taken from the
orbit specifications in the problem statement, and the exit velocity for Region 1 and initial
velocity for Region 3 are used as approximate boundary conditions for Region 2.

3.1 Region 1: Spiral Escape from Earth Orbit

First, the radius and velocity of the initial circular orbit are computed from the orbital
period:
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From this parking orbit, we assume the ion thrusters begin exerting a constant force of
F = 0.4 N. We also assume the thrust is constrained to point in the direction of the velocity,
i.e. a = F

m(t)
v
v , where m(t) = m0 − F

4000g t in accordance with equation (2). We can then
write the gravitational differential equation as

d2r
dt2

+GME
r
r3

=
F

m(t)

v
v

(5)

Breaking down this equation into its radial and orbital components, we arrive at

d2r

dt2
− r(dθ

dt
)2 +

GME

r2
=

F

m(t)v

dr

dt
(6)

d2θ

dt
+

2

r

dr

dt

dθ

dt
=

F

m(t)v

dθ

dt
(7)

These coupled differential equations were solved with the numerical tool in Appendix
A from the initial conditions set by the parking orbit. When the spacecraft exits Earth’s
sphere of influence, r = 9.29× 108 m, we calculate

v = 710.5 m/s

m = 4169.9 kg

time elapsed = 8.1402× 107 s = 2.579 y

Before moving on to an analysis of Region 2, it’s worth inspecting how the assumptions we
placed on the thrusts compare to the thrust of a fuel-minimizing orbit. First, we will justify
the assumption of constantly maintaining the thrust at the engine capacity of 0.4 N. Recall
that the mass difference ∆m is proportional to the total impulse, which is proportional to
the acceleration times the escape time. A careful analysis of the analytic approximation of
the spiral escape yields [3]:
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aθtescape ≈ v0(1− (
2aθr0
v20

)
1
4 )

This expression rests on the assumption that the spiral orbits remain close to circular, so
there is some uncertainty around the exact escape time tescape. However, it does accurately
describe the relationship where the product aθtescape decreases for greater accelerations;
thus the total impulse to reach escape conditions decreases with greater acceleration, and
we are justified in assuming that the thrust stays at its greatest possible value.

Second, we inspect the assumption that the thrust is constrained to lie along the direction
of velocity. Several analyses of optimized low-thrust spiral escape trajectories find that
the fuel-minimizing trajectory has an applied thrust which lies not constantly parallel to
velocity, but at an angle to the velocity vector which oscillates with time [5] [7]. However,
optimized trajectories which do constrain thrust to the direction of velocity find an in-
significant fuel penalty (0.13-0.39% increase in fuel consumption) compared to optimized,
unconstrained trajectories [5].

3.2 Region 2: Orbit Raising to Saturn

Trajectories for the Earth-Saturn orbit transfer were calculated by numerically integrating
the equations of motion for the spacecraft over time. Using a polar coordinate system
centered on the Sun, the equations of motion in the spacecraft reference frame are [8]:

ṙ = vr (8)

θ̇ =
vθ
r

(9)

v̇r =
v2θ
r
− 1

r2
+
cT cosα

m
(10)

v̇θ = −vrvθ
r

+
cT sinα

m
(11)

ṁ = −cT
νe

(12)

Where vθ and vr are spacecraft’s velocity in the tangential and radial directions respec-
tively, m is the instantaneous spacecraft mass, and alpha is the angle between the thrust
vector and radial unit vector. For this analysis, alpha was set to zero.

A constant c =
Tmaxr20
m0µ

is introduced to normalize the initial conditions. Radii are normal-
ized to 1 AU, mass is normalized to m0, and velocities are normalized to Earth’s orbital
velocity.

This system of differential equations can be solved numerically to propagate the space-
craft’s trajectory through time. The spacecraft’s state at any point in time is represented by
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the state variable:
xxx = [r, θ, vr, vθ,m] (13)

To simplify the initial conditions, we assume that after exiting Earth orbit, the spacecraft
is in a perfectly circular orbit around the Sun with Earth’s orbital radius. In comparison to
the vast distance between Earth and Saturn, the difference between the spacecraft’s initial
orbital radius and Earth’s is small. This assumption allowed us to set r0 = rearth. vr0 = 0,
and vθ0 = vearth + vescape.

The MATLAB program we wrote to solve the EOMs and generate plots of the spacecraft’s
trajectory is included in the appendix.

3.3 Finding Minimum-fuel Trajectories

Finding feasible, minimum-fuel trajectories is a complex optimization problem that is the
subject of much research. To truly find the best trajectory, we would need to consider
variable thrust profiles, thrust angles, launch dates, and gravity assist maneuvers. To con-
strain the problem and avoid the mathematical and computational complexity involved
with such an approach, we instead aimed for a ballpark estimate of minimum fuel by con-
sidering classes of trajectories that can be obtained by only varying the thrust profile.

The first is the case of constant, continuous thrust. The second, continuous thrust that
decreases with 1/r2. And finally, a case where the the engines are operated at maximum
thrust for part of the journey, and then turned off. We found that the last approach con-
sumed the least fuel and produced trajectories with reasonable transfer times.

For each case we have generated an example trajectory. These trajectories are not optimal
solutions, and are included for illustrative purposes. The mass and time estimates are
approximate. We noticed that varying the parameters of the trajectory slightly did not
tend to have a large effect on fuel consumption, even if the trajectory had a very different
shape. Furthermore, we did not impose boundary conditions on the trajectories. The goal
was to obtain a trajectory that could be feasible for some arbitrary alignment of planets. In
a later section, we will show that a launch window does indeed exist for the partial-coast
trajectory.

3.4 Constant-Thrust Trajectory

The simplest case that we looked at was when we constantly applied the thrust. This lead
to a logarithmic spiral as the spacecraft’s loss of mass due to its fuel depletion lead to a
constant force applied to the craft during the trip. This resulted in a sharp entry angle for
the craft into Saturn’s orbital path as shown in Figure 4. The fuel consumption was 50% of
the initial spacecraft mass, while the duration of travel was about 8 years.

8



Figure 4: Constant-thrust spiral trajectory (distances in AU)

3.5 Decreasing-Thrust Trajectory

One strategy to minimize usage is to scale the intensity of thrust by 1/r2, where r is dis-
tance from the Sun. This also constrains the acceleration of the spacecraft as it loses mass,
producing a more favorable Archimedian spiral which does not overshoot Saturn’s orbit.
Since the final velocity of the spacecraft will be in the direction of Saturn’s orbit, less δV is
needed for orbit capture.

Since the spacecraft engine only supplies a constant 400 mN of thrust, we would vary the
thrust output by rapidly pulsing the engine. Varying the duty cycle would approximate
an engine with variable thrust.

For the trajectory shown in 5, total mass usage was roughly 45% of the initial spacecraft
mass, an improvement on the constant-thrust trajectory because the spacecraft spends less
time operating at high thrust levels. However, the drawback of this approach is that it
produces extremely an long and gradual ascent that takes decades to complete. As such,
it is not the most practical approach for raising an orbit over such a large distance.
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Figure 5: 1/r2 Thrust Trajectory

3.6 Partial-Coast Trajectory

The partial-coast strategy involves operating the spacecraft at maximum thrust for the first
part of the journey, and then turning the engine off after a certain cuttoff distance rCT . This
approach takes advantage of the high engine thrust to quickly exit the inner solar system,
but if tuned correctly, allows the spacecraft to be placed into an elliptical orbit once it has
enough energy, which will intersect Saturn’s orbit at it’s apogee.

In the trajectory shown in Figure. 6, the engine was reduced to 50% output at 2.6 AU,
and completely turned off at 2.66 AU, indicated by the cross on the diagram (note the the
engine turns back on if the spacecraft orbit returns below 2.6 AU later on in the trajectory).
This thrust regime produced the most favorable mass usage, only 32% of initial mass, and
also a reasonable transfer time of 15.9 years. Another advantage is that the spacecraft
reaches Saturn orbit with a much lower velocity than the other two methods, minimizing
propellant usage in orbit capture. This orbit shape was used to generate an entry velocity
for the spacecraft into Saturn orbit, treated in the next section.
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Figure 6: Trajectory where engines are turned off after 2.66 AU.

3.7 Region 3: Spiral Capture into Saturn Orbit

The radius and velocity of the final orbit around Saturn are computed with a similar cal-
culation as in (3) and (4):

rf = 2.71098 m

vf = 1182.9 m/s

The analysis of the spiral capture trajectory is identical to that of the spiral escape, with
the difference that the mass decreases as the spacecraft moves in toward the central body,
rather than as the spacecraft exits the orbit. We treat the problem equivalently as that of a
spacecraft exiting a circular orbit around Saturn with a thrust 0.4 N applied constantly in
the direction of velocity as for Region 1, whose mass increases rather than decreases but
at the same rate - effectively, we integrate the equations of motion backwards. The mass
of the spacecraft in its final circular orbit is varied to match the spacecraft’s entry mass to
the final mass from Region 2. The entry point is taken to be where the total energy of the
orbit obtained by integrating the equations of motion backwards, using the results of the
partial-coast trajectory. With these constraints, we calculate

mfinal = 2076 kg

time elapsed = 7.649× 107 s = 2.424 y
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3.8 Launch Window

Between late June 2038 and late December 2056 could be a potential window of time that
the mission could take place. We know that the it will take roughly 2.58 years for the
probe to escape Earth’s orbit and another 15.92 years for it to intersect Saturn’s orbital
path. Setting the position of the Earth relative to the Sun (at launch) at zero degrees and
taking into account Saturn’s 29.457 Earth year orbital period, gives us that Saturn will
move 62.8 percent along its orbit and 226.08 degrees since the start of our mission. Based
on a rough estimate of our trajectory, the space craft will intersect Saturn’s orbit around
the 130 degree mark (still keeping the launch point as the zero degree reference). Using
ephemerides taken for NASA’s HORIZONS Web-Interface, late June 2038 was determined
to be a possible mission start time, as 18.5 years from then Saturn will be close to the
position of where the craft will enter its orbit [1].

4 Conclusions

The mass of the spacecraft when it enters the circular Saturn orbit is 2076 kg, so we estimate
this trip would require a minimum of 2924 kg of fuel for the 5000 kg spacecraft. Summing
up the duration of the trajectories in each of Regions 1, 2, and 3, we also estimate a total
trip time of 20.92 years. These estimates are obtained by analyzing the trajectory taken by
the spacecraft when it thrusts continuously in the direction of velocity to escape Earth’s
orbit, undertakes the partial coast trajectory as described in section 3.6, and then thrusts
continuously in the direction opposite of velocity to slow down into a circular orbit around
Saturn. This trajectory could be optimized by further optimizing the path taken in Region
2, as well as unconstraining the magnitude and direction of thrust in Regions 1 and 2. In
addition, more complicated maneuvers such as gravity assists could further decrease the
minimum required fuel and total trip time.
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5 Appendix

5.1 Appendix A: C++ Numerical Tool to Calculate Earth Escape Orbit Parame-
ters

include <iostream>

include <math.h>

static float F = 0.4;

static float GM = 3.98603e14;

static float g = 9.80665;

long double r = 6.652567399e6;

long double v = sqrt(GM/r);

long double m = 5000;

int main() {
long double dr = 0;

long double om = v/r;

long double d2r = F/m * dr/v + r*om*om - GM/(r*r);

long double dom = F/m * om/v - 2/r*dr*om;

double dt = 0.1;

double time = 0;

while (r < 0.929e9) {
r += dr*dt + 1/2*d2r*dt*dt;

om += dom*dt;

dr += d2r*dt;

v = sqrt(dr*dr + r*r*om*om);

m -= F/4000/g*dt;

d2r = F/m * dr/v + r*om*om - GM/(r*r);

dom = F/m * om/v - 2/r*dr*om;

}
}
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5.2 Appendix B: Matlab Region 2 Trajectory Simulator

r0 = 1.495978770e11;

mu = 1.3271244e20;

v0 = sqrt(mu/r0);

tmax = 400e-3;

m0 = 4170;

c = tmax*r0/(m0*mu/r0);

ve = 4000*9.81;

alph = pi/2;

tspan = 0:0.001:200;

t,x

= ode45(’propagate’,tspan,x0);

polarplot(x(:,2),x(:,1))

hold on

earthorbit = linspace(0,2*pi,50);

polarplot(earthorbit, 1+zeros(size(earthorbit)))

saturnorbit = linspace(0,2*pi,50);

polarplot(saturnorbit, 9.5+zeros(size(saturnorbit)))
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5.3 Appendix C: Matlab Region 2 Propagation Tool

function xdot = propagate(t, x)

r0 = 1.495978770e11;

mu = 1.3271244e20;

v0 = sqrt(mu/r0);

tmax = 400e-3;

m0 = 5000;

ve = 4000*9.81/v0;

alph = pi/2;

c = r0/(m0*mu/r0);

tmax = tmax/x(1)2

xdot = [x(3) ;

x(4)/x(1) ;

x(4)2/x(1)− 1/x(1)2 + c ∗ tmax ∗ cos(alph)/x(5);

− x(3) ∗ x(4)/x(1) + c ∗ tmax ∗ sin(alph)/x(5);

− c ∗ tmax/ve];

end
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