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Abstract

In this paper, we find the minimum time before impact with the Earth at

which an asteroid with a 100 meter diameter can be deflected by a 20 000

kg spacecraft. We investigate the feasibility and effectiveness of several differ-

ent deflection methods through theoretical physical approaches to determine

the shortest distance from the Earth, and thus the shortest time, achievable.

We show, using conservation of energy, conservation of momentum, the Ideal

Rocket Equation, and Newton’s Law of Universal Gravitation, that deflection

through kinetic impact is achievable only at large distance from the Earth and

time frame of several years, even with a high momentum transfer efficiency. For

a C-type asteroid of average density, liquid hydrogen fuel, and a momentum

transfer efficiency of unity, the distance required would be about 3.8 · 109 km,

with a corresponding time of 4.8 years. Therefore, we also consider the approach

of splitting the asteroid through impact with the spacecraft. The scenario of

symmetrical fragmentation into two pieces yields a much smaller distance from

Earth and time frame of approximately 1.3 · 106 km and 15 hours, respectively.

Though this approach allows for deflection within a shorter time frame, we

risk some fragments hitting the Earth rather than being deflected, with that

probability increasing as the collision occurs closer to the Earth.
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1 Introduction and Problem Restatement

Asteroid impacts may one day threaten the survival of humanity. Recently, organ-

isations such as NASA have started testing planetary defense capabilities against

asteroids, such as through the DART mission [1]. Within this paper, we aim to find

the minimum time before impact with Earth at which the asteroid can still be de-

flected by a spacecraft. This paper follows an engineering design process: first we

frame the problem through restating and listing assumptions, then we devise several

possible deflection approaches, and finally assess each for feasibility, and if feasible, for

how much time before Earth impact is required in order to determine the minimum

amount of time at which an asteroid can still be deflected.

2 Assumptions

Assumptions are acknowledged when they are made throughout the paper, but a list

of key assumptions is also provided here.
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1. The asteroid is a sphere for the purpose of estimating mass. In reality, the aster-

oid can take a myriad of shapes which would give it a large range of masses. This

assumption is also made again when we consider the gravitational energy for splitting

a uniform sphere.

2. The asteroid has a uniform density, which we take to be that of an average density

for a C-type asteroid (see Section 4, ”Solving for Collision Distance from Earth and

Time before Earth Impact”). Once again, this assumption is made only for calcu-

lating mass and gravitational energy of splitting, and does not effect the collision

mechanism beyond these.

3. Though we first develop a general formula, we assume that the asteroid is initially

heading directly towards the center of the Earth for later calculations.

4. Though we also simulate other types of fragmentation, our calculations for frag-

mentation consider the highly idealized case of symmetric separation into two parts.

3 Two Failed Approaches for Asteroid Deflection

We continue to develop our solution through an engineering design processes by con-

sidering and evaluating the feasibility of several different approaches. In this section,

we will demonstrate why certain approaches are not feasible, before we move onto

optimizing and evaluating successful approaches.

Landing on the Asteroid Landing on the asteroid and then burning fuel while

on the asteroid to move the it may be a more efficient use of fuel than colliding with

the asteroid. However, in order to land, we must bring the spacecraft to the speed of

the asteroid. Letting v∞ represent the initial velocity of the asteroid and ve represent

the effective exhaust velocity, the Ideal Rocket Equation yields

v∞ = ve ln

(
m(t0)

m(t)

)
⇒ m(t) = m(t0) exp

(
−v∞

ve

)
(1)

Substituting a value of 4.5 km/s for ve, as is typical for liquid hydrogen fuel (see Sec-

tion 4, ”Solving for Collision Distance from Earth and Time before Earth Impact”),

we get that the mass on landing is only about 40 kg, or that 99% of the mass has
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been lost. Therefore, there would not be enough fuel left to divert the asteroid.

Tethering We can try to eliminate the expenditure of fuel in bringing the spacecraft

to the speed of the asteroid by launching a cable to connect the spacecraft to the

asteroid. A cursory calculation,

mcable = ρcableLA = ρcable(
1

2
at2)(

ma

σ
) =

mρcable
2σ

a2t2 =
mρcable
2σ

v2asteroid (2)

where L is the length of the cable, A is the cross sectional area of the cable, a is the

acceleration acting on the spacecraft, ρcable is the cable density, m is the spacecraft

mass, and σ is the ultimate yield strength of the cable material, shows the flaw in this

approach. Substituting for the known mass of the craft and speed of the asteroid, as

well as σ = 420 MPa (ultimate) and ρ = 7800 kg
m3 , which are typical values for steel,

we obtain a cable mass of approximately 1 · 108 kg, or 5000 times the mass of the

spacecraft!

4 Theoretical Analysis of Kinetic Impact Deflec-

tion

The most straightforward approach is to collide the spacecraft with the asteroid in

order to change its course.

Momentum Required for Deflection Figure 1. shows key parameters of the

problem, where D represents the distance from the asteroid to the axis passing though

the Earth’s centre in the direction of the asteroid’s initial velocity.

The initial angular momentum of the asteroid is L = Mav∞D, where Ma is the

mass of the asteroid. Due to the conservation of energy (K1 + U1 = K2 + U2),

Mav
2
∞

2
=

L2

2R2Ma

− GMaMEarth

R
(3)

as the asteroid approaches but does not hit the Earth, where R is the closest distance
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Figure 1: A schematic of the asteroid’s path. The red line represents the path taken
when there is no collision with the spacecraft, while the green line represents the path
taken when there is collision with the spacecraft.
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from the path of the asteroid to the centre of Earth. Rearranging this equation yields

L2 = (MaRv∞)2 + 2GM2
aRMEarth (4)

For impact with the Earth, R = REarth, so to avoid impact we need

L2
c > (MaREarthv∞)2 + 2GM2

aREarthMEarth (5)

where Lc is the asteroid’s angular momentum after impact. We therefore aim to

maximize Lc through the spacecraft collision.

Following the inelastic collision between the spacecraft and the asteroid, the as-

teroid’s angular momentum is

Lc = Mav∞D + r⃗ · p⃗sat = Mav∞D + psatr sinϕ (6)

where r⃗ is the radius vector from the Earth to the point of collision, p⃗sat is the

momentum vector of the spacecraft, and ϕ is the angle between these vectors, with

an optimal value of 90◦.

The worst case scenario is when the asteroid impacts Earth head on, or, D = 0, as

all the angular momentum required to miss the Earth must come from the spacecraft.

Within this scenario we need

p2satr
2 > (MaREv∞)2 + 2GM2

aREarthMEarth (7)

Maximizing Spacecraft Momentum prior to Impact The spacecraft may by

accelerated prior to impact with the asteroid to maximize momentum. According to

the ideal or Tsiolkovsky rocket equation,

usat(t) = usat(t0) + ve ln

(
m(t0)

m(t)

)
(8)

where ve, usat(t), m, and t0 are the effective exhaust velocity, spacecraft velocity,

spacecraft mass, and time when the acceleration commences, respectively.

Substituting Eq. (9) into the equation for momentum, psat = m(t)usat(t), and
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differentiation with respect to m(t) yields

dpsat(t)

dm(t)
= (usat(t0) + ve ln

(
m(t0)

m(t)

)
)− ve (9)

Setting this to zero and substituting for usat yields that maximum momentum is

achieved when usat(t) = ve. This has an intuitive physical explanation. When the

velocity of the spacecraft exceeds the exhaust velocity the ejected gases move in the

direction of the spacecraft respect to the stationary frame, hence, reducing the mo-

mentum of the spacecraft due the momentum conservation. When the spacecraft

moves slower than the exhaust speed the jet engine adds the momentum of the space-

craft as the exhaust gasses move backwards with respect to the stationary frame.

Therefore, the maximum spacecraft momentum that can be obtained using a jet

engine is

popt = vem = vem(t0) exp(u(t0)/ve − 1) (10)

where the initial velocity is given by the equation for centripetal acceleration

u(t0)
2 = G

MEarth

r
(11)

where r is the orbital radius.

Time to Impact with Earth Rearranging Eq. (4) yields

v(r) =

√
v2∞ +

2GMEarth

r
(12)

where we ignore atmospheric drag as the asteroid approaches Earth due to the aster-

oid’s large size. Therefore, the before impact with Earth is

Timpact =

r∫
REarth

ds

v(s)
(13)
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where r is the distance from Earth at the moment of spacecraft-asteroid collision.

The integration can be carried out explicitly using change of variable

sinh2(ζ) =
v2∞

2GMEarth

(14)

The integration then yields

Timpact =
1

v∞
(
√
s2 + 2as− a ln(a+ s+

√
2as+ s) |rREarth

(15)

where

a =
GM

v2∞
(16)

Solving for Collision Distance from Earth and Time before Earth Impact

According to equation (10) we conclude the effective exhaust velocity of the jet en-

gine is one of the most critical parameters that influence the efficacy of the asteroid

deflection. NASA typically uses liquid hydrogen, which can have a specific impulse

in a vacuum of 460 [s] on the higher end [2], which we multiply by a specific gravity

of 9.8 [m
s2
] to get an effective exhaust velocity of 4.5 [km

s
].

Another critical parameter is to consider is the density of the asteroid. For the

three types of asteroid composition, C, S, and M, the average densities are 1380 [ kg
m3 ],

2710 [ kg
m3 ], and 5320 [ kg

m3 ], respectively [3]. C type asteroids are the most common [4],

so they are the type we will consider when we solve the problem numerically.

As per the problem statement, we wish to minimize the distance from the Earth to

the collision, or in other words consider the case for equality in Eq. (7) when we use

the optimal momentum from Eq. (10). We thus obtain a distance of about 3.8 · 109

km – an order of magnitude greater than the distance to Mars and a corresponding

time of 4.8 years. This large result is not completely unexpected, as previous studies

suggest that asteroids should be deflected years before they reach earth [7, 6, 8]. We

could gain a better result by including the effect of ejecta, parts of the asteroid that

are sent in the opposite direction after collision. These ejecta would increase our

momentum transfer efficiency from the case of β = 1, to possibly β ≈ 3. [5]. The
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revised equation for momentum would be

popt = βvem = βvem(t0) exp(u(t0)/ve − 1) (17)

However, this is not enough, as r is only inversely proportional to β, so the distance

would not decrease by the several factors of 10 required to deflect at low Earth orbit.

5 Theoretical Analysis of Deflection through Ki-

netic Impact with Asteroid Fragmentation

To be able to deflect an asteroid at a closer distance, a more explosive approach must

be taken, as spacecraft momentum is too small to deflect asteroids unless they are

sent several years before impact [7, 6, 8].

Before we move forward we establish the following result:

Ugravitational,asteroid =
3

5

GM2
asteroid

radius
= 4.2 · 105J (18)

Meanwhile, the kinetic energy of the spacecraft impact is

Kcollision =
1

2
msatv

2
∞ = 6.0 · 1012J (19)

Since the energy of the impact is several orders of magnitude greater than the gravi-

tation energy within the asteroid, we do not not expect gravitational forces between

asteroid fragments to play a role in its subsequent dynamics.

Unlike momentum, the kinetic energy of the impact provides favorable square

root scaling of the ratio of asteroid to spacecraft masses, which may allow for the

explosive separation of the asteroid. We consider symmetric fragmentation which

results in two objects being deflected in opposite direction with velocity U . For small

mass spacecrafts the kinetic energy balance in the reference frame of the centre of

mass is written as
1

2
m

(
(u

∥
sat + v∞)2 + (u⊥

sat)
2
)
=

1

2
MU2 (20)
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where

U =

√
m

M

√
(u

∥
sat + v∞)2 + (u⊥

sat)
2 (21)

and u
∥
sat and u⊥

sat are parallel and perpendicular components of the spacecraft velocity

with respect to the asteroid.

Maximizing the resulting velocity U with respect to the incoming velocity and

mass of the spacecraft using the ideal rocket equation gives the following constraint

on the relative velocity

usat + v∞ = 2ve (22)

As v∞ is far larger than the effective exhaust velocity it is disadvantageous to accel-

erate the spacecraft towards the asteroid.

The division of the mass into fragments then transforms condition (7) into

U2r2 > (REarthv∞)2 + 2GREarth

⇒ r2 >
M

msat

(REarthv∞)2 + 2GREarthMEarth

(usat + v∞)2

(23)

Though we will use Eq. (23) for calculations, we may also drop low order terms to

get the simplified equation

r >

√
M

msat

REarth (24)

Evaluation of the Eq. (23) gives value rimpact = 208REarth. Substituting the lim-

its REarth and rimpact into Eq. (15) using integration gives a time before impact of

Timpact = 5.26 · 104[s] ≈ 14.6[hours].

A Simulation of Asteroid Fragmentation The impact of a collision on the

structure of an asteroid has many complexities [9], with results varying due to the

size and composition of an asteroid. We investigate the outcome of a collision that

results in the fragmentation of an asteroid into a large number of fragments that move

as a spherical front from the impact point. In the frame of reference of the asteroid,

the fragments have the same velocity given by Eq. (20). We model the distribution

of the orthogonal components of the asteroid fragments. In Fig. 2 the distribution

of the velocity in the direction orthogonal to the asteroid velocity is shown. Notably,
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Figure 2: u⊥ distribution of the asteroid fragments. We imposed that the asteroid
is split into 200 fragments and all the kinetic energy of the satellite impact has been
redistributed into kinetic energy of the fragments.
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Figure 3: Probability of the asteroid fragments to impact Earth as a function of the
satellite strike distance.
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the velocities are clustered towards the edge of the distribution. This is explained

by the fact the main contribution to the area of a sphere comes from its sides rather

than the visible front area.

We counted the number of fragments that satisfy the inequality (23) for different

distances of the satellite strike. At the distance that exceeds the minimal strike

distance by 50% the number of fragments that impacted Earth was 30%. Doubling

the distance again decreased the number of impacting fragments to 7%. The results

of our simulation show that when we move away from the ideal case of symmetrical

fragmentation into two pieces, we expose ourselves to the risk of asteroid fragments

striking the Earth. Therefore, deflection through asteroid fragmentation should only

be used when there is not enough time before collision left to achieve kinetic impact

deflection.

6 Discussion

Model Strengths

1. The model considers multiple approaches to deflecting an asteroid in order to

compare the minimum times and distances at which deflection is still possible.

2. The model is relatively simple and uses concepts known by students that have

completed a year of physics.

3. The model can be solved explicitly at most stages, which avoids the need for

numerical approaches.

Model Shortcomings

1. The impact of ejecta, which typically increases the momentum transfer efficiency,

is not analyzed in detail due to its complexity and the uncertainties involved. In fact,

it is possible that the ejacta could in some cases slightly decrease the momentum

transfer efficiency if they are released in the forward direction [5].

2. The approach of fragmenting an asteroid is highly chaotic, with complete deflection

achievable only in highly idealized scenarios, as is shown by our simple simulation.

3. For the analysis of deflection purely through kinetic impact, we do not consider

the effect of celestial bodies apart from the Earth, which would have some effect given
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the large distance between the Earth and the point of collision.

7 Conclusion

We conclude that the shortest time before Earth impact required to reflect an asteroid

with a kinetic impact approach is 4.8 years. When using a fragmentation approach,

an ideal symmetrical fragmentation allows deflection at a time to impact of 15 hours.

However, in reality, the second approach is difficult to predict and may lead to asteroid

chunks hitting the Earth. The other two possible approaches of landing and the

tethering are shown to be impossible for the given spaceship mass. The results of this

paper emphasize the need for early detection systems as a significant amount of time

before Earth impact is needed to ensure safe deflection.
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Appendices

Maple Calculations for Distance and Time

(5)(5)

(1)(1)

(3)(3)

>  >  

>  >  

(9)(9)

(2)(2)

>  >  

>  >  

(8)(8)

(7)(7)

>  >  

>  >  

>  >  

(6)(6)

(4)(4)

>  >  

>  >  

>  >  

>  >  

>  >  

SI

Asteroid mass

Orbital velocity

Rocket equation 
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(16)(16)

(18)(18)

>  >  

>  >  

>  >  

>  >  

>  >  

(13)(13)

>  >  

(17)(17)

>  >  

(14)(14)

(9)(9)

(12)(12)

(10)(10)

(11)(11)

>  >  

(15)(15)

>  >  

>  >  

>  >  

0.00002767912054

190.0744999

Satellite velocity
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(18)(18)

>  >  
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(20)(20)

(9)(9)
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>  >  

>  >  

>  >  
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>  >  

>  >  
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Collision time
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