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Abstract

In our work we considered an asteroid with a diameter of 100 m on
a trajectory to directly impact the Earth at a speed of 25 km/s. With
proper assumptions we managed to parameterize with one parame-
ter – impact angle orbits that such asteroids can have. We restricted
ourselves to asteroids that are bounded to Solar System. Further we
considered the disturbance of asteroid’s trajectory after adding certain
momenta to it (collision with spacecraft), we found the optimal way of
momenta transfer to be: to hit asteroid, parallel to its own velocity, in
the asteroid’s perihelion. We found also that disturbance in asteroid’s
period is greater than disturbance of its orbit’s axes, and we focused
on the first value neglecting the later. We estimated value of momenta
that we can transfer to asteroid with our spacecraft. Having that we
calculated the disturbance of the period for 20 different asteroid’s or-
bits (characterized by impact angle). Further we obtained condition
on minimal time difference, that has to result from spacecraft’s col-
lision, to prevent Earth-asteroid collision. That together with values
of orbit’s periods allowed as to get final results. We obtained that we
have to hit asteroid between 0.1 to 0.7 year before its possible collision
with Earth.
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1 Introduction
Let us consider space objects posing a possible threat to earth (i.e. having

trajectories which intersect the Earth’s orbit) we can divide them into two
categories. One category will contain asteroids bound to our solar system,
while the second one - comets with hyperbolic trajectory (or effectively hy-
perbolic, as seen in the proximity of the Sun). According to data gathered by
NASA Center for Near Earth Object Studies, a vast majority (>99.57 %) of
objects considered as the threat, are asteroids with closed orbits around sun.
This can be easily understood in the face of the fact that the hyperbolic ob-
ject would have the chance to hit the earth only once during its flight through
the Solar System, while the asteroids closer to the Sun can cross Earth’s or-
bit every orbital period. impactFamous recent event of a Chelyabinsk meteor
entering the Earth’s atmosphere on 15 February 2013 and causing injuries to
several people and vast property damage was related exactly to this kind of
asteroid. We have decided to exclude the objects with hyperbolic trajectories
from our model, and focus on objects bound to Sun. class

Figure 1: Discovery statistics of Near Earth Objects according to NASA
CNEOS. Most comets and all four asteroid classes correspond to closed orbits
around Sun
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2 Numerical simulations
The main tool for dealing with the problem is using numerical simulations.

In order to solve the problem we use Verlet integration [5] method. This
approach gives better results than the easiest Euler’s method, because the
algorithm is time-reversible, just like the physics laws.
The algorithm was implemented in programming language Python. During
simulation we do small time-steps dt. At each step we calculate new grav-
itational force acting on the object and its new position. The value of dt
depended on the strength of the force. In the close-to-Earth locations the
value was dt ≈ 10s, but in the larger distances it became dt ≈ 200s.
In order to calculate the change of period of asteroid orbit caused by collision
with spacecraft we numerically calculated the new semi-major axis through
numerically looking for the closest and most far positions from the Sun.

3 Restatement of the problem and a model used
for obtaining results

3.1 Asteroid’s trajectory

We consider a class of objects defined as "an asteroids on a trajectory
to directly impact the Earth at a speed of 25 km/s". To see what orbits
correspond to the class of such objects we reversed the problem and analyzed
a trajectory of an object starting from Earth’s surface with velocity (in the
Earth’s frame of reference) vcol = 25km

s at the angle ϕ, in the radial direction.
In this way we parameterized by an angle parameter ϕ all possible orbits
belonging to the class. Here we make two reasonable assumptions. One is
that asteroid’s orbit lies in the same plane as Earth’s (we use only an angle
ϕ) which is the case. The other one is that Earth’s orbit is ideally circular
- we do not consider different points (with respect to Sun) of collision but
assume that there is a symmetry. The assumption is quite reasonable, as
Earth orbit’s eccentricity is just 0.0167.

Depending on the ϕ we may have hyperbolic trajectory or a closed one.
Velocity of the asteroid relative to Earth may be added or subtracted from the
Earth’s velocity in the Solar System frame of reference and result in a velocity
big enough to escape Solar System in some cases or a velocity implying closed
orbit in the other. We have to remember that in our approach we analyze
motion with reversed time and added velocity means that asteroid "caught
up with Earth and hit it from the back" while subtracted velocity means
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that the opposite has happened. To find what ϕ imply the closed orbit we
use energy formula. If the sum of potential and kinetic energy is negative, it
means that asteroid does not have enough energy to escape to infinity and
the orbit is closed. The energy is given by (1), where Rz is Earth’s radius,
R is mean Earth’s distance from Sun, ma is Sun’s mass, mz is Earth’s mass
and v is impact velocity (25 km

s in our case). On the figure 2 we see the
Energy depending on ϕ angle. By solving (1) we find that closed orbits form
approximately for angles in the range [3.2305, 6.19424].
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Figure 2: Dependence of energy (in arbitrary units) on impact angle –
negative energy results in closed orbit.

To find possible orbits, we have simulated the motion of an asteroid starting
from Earth at the angles, that result in closed orbit. Numerical simulation
has been done in two phases. In phase one we calculate both the gravitational
force from the Sun and Earth acting on asteroid and gravitational force
from the Sun acting on Earth. At the moment when the force from the
Sun acting on asteroid is more than one thousand times stronger than one
acting from Earth, we move to phase two. In the phase two we assume that
both the asteroid and the Earth orbit around the Sun independently and we
consider only the Sun’s gravitational field. This assumption in many cases is

4



Team 425 UPC 2022

reasonable. On the figure 3 we see example of (ϕ = 4) trajectories in phase
one - time of simulation is short (below one day) and trajectories look as
they would be straight. On the figure 4 we see full orbit we get for ϕ = 4.
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Figure 3: Trajectories in phase 1 for ϕ = 4.
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Figure 4: asteroid’s orbit for ϕ = 4.

For the purposes of its usefulness further in this work, we find dependence
of the orbital period on the impact angle. This was done numerically and the
results can be seen on the figure 5. As we may expect, as we approach the
angles that imply a hyperbolic orbit, the period tends to infinity (we have
obtained numerical results for 20 angle values between 3.35 and 6.1 radians).
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Figure 5: Dependence of period on impact angle.

To summarize - we have parameterized all the possible orbits belonging to
objects mentioned in the problem statement and by a numerical simulation
we have found their trajectories and orbital periods.

3.2 Model of the spacecraft and its mission

For an object potentially hazardous to Earth with diameter of 100 m,
according to the comprehensive study "Defending Planet Earth" [3], two
viable strategies for actively deflecting the object are a kinetic impact of a
spacecraft and altering its trajectory by putting a spacecraft in proximity of
the object and tracting it gravitationally. The second option requires a lot
longer time before impacting the Earth to work (see regimes of applicability
in the figure 6). We therefore choose our spacecraft to be designed for a
kinetic impact mission and thus achieve the shortest possible time before
Earth impact required for a mission success. We consider possible use of
nuclear weapon to be out of scope of this problem.
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Figure 6: Range of the applicability of certain asteroid threat mitigation
strategies, depending on the diameter of asteroid and time left to the impact.
Source: [3]

Prime example of what are the optimal parameters of this kind of mission
and spacecraft is the recent NASA Double asteroid Redirection Test. That
mission’s goal was very similar to what we would want to achieve in a situa-
tion described in our problem: impacting an asteroid of diameter comparable
to 100 m, orbiting the Sun on an elliptical orbit nearing the Earth’s one, with
a maximum possible momentum transfer to the asteroid. Designing optimal
trajectory and choosing the right propulsion system, constrained by the rel-
ative location of Earth and asteroid, mission time, requirement of minimum
fuel loss in maneuvering and maximum kinetic energy transferred at impact
is a very complex task. In this situation, designing an entire mission plan
for every kind of asteroid would have to be overly simplistic and very likely
introduce the difference in momentum transfer of some few orders of magni-
tude depending on a chosen simplifications, as well as a type of propulsion

8



Team 425 UPC 2022

and different mission trajectories. We decide, that rather than optimizing
for the best mission trajectory and designing all the propulsion usage and
maneuvers, in this work we will estimate the momentum transfer from our
spacecraft to the asteroid as a constant value throughout the calculations,
based on the initial condition of our 20 ton spacecraft put on Low Earth
Orbit and a value of momentum transfer that has been measured during a
DART mission, for its smaller device. Assuming that our spacecraft, that
have been put on the low earth orbit is using contemporary technology and
the object we try to deflect have a typical Near Earth Object trajectory, both
it and the mission trajectory can be modelled as an adequate counterpart of
the DART mission, witch have had a very similar goal to ours and has been
successfully carried out with the technical capabilities we have right now.

Figure 7: Optimal trajectory chosen for the DART mission. Vectors show
the usage of ion thruster throughout mission. Source: [1]

Our estimation of the spacecraft momentum at impact will be taken as a
product of spacecraft mass when it escapes the Earth’s gravity after using
some fuel and the relative velocity of spacecraft and asteroid corresponding
to the results of DART mission.
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3.2.1 Escaping the Earth

First, we try to estimate, how much fuel will be used up due to the escape
from Earth’s gravity. We start with a spacecraft on Low Earth Orbit, that
is with a velocity of approximately 7.9 km/s relative to Earth. Typical Low
Earth Orbit objects have the altitude of a few hundred kilometers. For
example, International Space Station in its apogee has the altitude of 422
km[cite] or about 6.6% of Earth’s radius. Therefore we will assume, that
obtaining a total velocity equal to Earth’s escape velocity (11.186 km/s) is
needed for our spacecraft to escape the Earth. We use the Tsiolkovsky rocket
equation:

m0

mf

= e∆v/ve (2)

Where ve is exhaust gas velocity, equivalent to the engine’s specific impulse,
m0 and mf is the spacecraft initial and final mass, respectively and ∆v is
necessary difference in velocity during maneuver. We solve for mf with given
∆v = vescape − vLEO = 11.186 km

s − 7.9 km
s = 3.286 km

s , m0 = 20 · 103 kg We
assume that a typical liquid fuel rocket engine is used, with an effective
exhaust velocity of ve = 3800 m

s
The result is:

mf ≈ 8.44 · 103 kg = 0.422 ·m0

3.2.2 Impact speed

Our estimate of impact speed will be based on the measured impact ve-
locity of the DART mission. On the September 26, 2022 the 570 kg DART
Impactor spacecraft have crushed into the Dimorphos asteroid at a speed
of approximately 6.1 km/s, according to the data published by the mission
team [2].

This gives us a result of

pest = 5.1463 · 107kg · m
s

3.3 Momentum transfer during collision of the space-
craft and the asteroid

In this section we want to consider, how much momentum can the space-
craft transfer to the asteroid during a collision in real world.
Let us denote the total momentum amount carried by the spacecraft as P
and let β be such parameter, that the total transfer of momentum to the
asteroid is equal to βP . Let’s consider three possible types of collisions (see
fig.8):
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1. β < 1
This type of collision corresponds to a situation when there are some
ejecta caused by the spacecraft impact carrying off momentum in the
common direction with the asteroid’s velocity.

2. β = 1
This type corresponds to a perfect inelastic collision (spacecraft sticks
into asteroid)

3. β > 1
This type of collision corresponds to a situation when there are some
ejecta caused by the spacecraft impact carrying off momentum in the
opposite direction with the asteroid’s velocity. That is the situation
that helps us to affect more on the asteroid trajectory.

According to [4] the parameter β for an asteroid of diameter 100m can
be about β ∼ 8.4 for an impact at 10km/s. This result could be under-
stood by the following consideration. Due to low gravity force causing by
asteroid (mass of asteroid is about M = 109kg, and its radius is 50m) the
escape velocity equals approximately ve =

√
2GM
r

≈ 0.0052m/s. It means
that almost every object detached from asteroid reaches the escape veloc-
ity. Therefore whole powder took off by the crashing spacecraft would cause
extra momentum transfer.
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Figure 8: The picture depicts three possible types of collisions between
spacecraft and asteroid. The picture comes from [1].

A requirement is to measure the momentum transfer enhancement param-
eter (β), which is a measure of how much additional momentum beyond that
carried by the spacecraft is transferred to the asteroid in a kinetic impact.
In a perfectly inelastic collision, with zero net ejecta momentum, β = 1
by definition. More generally, ejecta caused by the spacecraft impact carry
off momentum, effectively giving an extra push and making β > 1 for the
impact.

3.4 The optimal asteroid-spacecraft collision

One of the most important question in the problem is how the place and
direction of collision between spacecraft and asteroid affects the trajectory
of asteroid, and consequently the chances to hit the Earth. Therefore we put
two questions: 1) how the period of a new orbit trajectory depends on the
velocity direction of the spacecraft just before collision, and what is the op-
timal direction of it. 2) How the period of new orbit depends on the collision
place on the heliocentric orbit of asteroid.
In the next part of this section we assume that the asteroid is traveling on
its heliocentric trajectory −→r (t) = (x(t), y(t)) and it is hit by the spacecraft
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in moment when its position was −→r0 . Just before collision the velocity of
a spacecraft was equal to −→v0 . Therefore the asteroid gained extra momen-
tum coming from the spacecraft and consequently the instantaneous velocity
changed from −→v to some −→v +

−→
δv. Using new initial conditions one can cal-

culate new trajectory and its period T + δT , where T is the period of the
trajectory before the collision.
In order to get exact results we assumed the transfer of momentum during
the collision as the space craft hit the asteroid with velocity 10km/s, den-
sity of asteroid ρ = 2g/cm3 mass of spacecraft (in the moment of collision)
m = 15000kg and parameter β = 10. These assumptions are rather more
optimistic than they could be in reality, but we assume them only to get
some qualitative results.

3.4.1 The direction of the spacecraft dependence

In this subsection it is assumed that the spacecraft hits the asteroid in
a fixed place −→r . The total velocity Vs of the spacecraft is also fixed. We
ask, how the change in period δT depends on the direction of the velocity
of spacecraft. In this consideration we assume only trajectories on plane,
so the direction of the spacecraft velocity could be characterized by only on
one parameter θ ∈ (0, 2π) meaning the angle between x axis and spacecraft
velocity. One can numerically check which value of θ gives the biggest change
in period. In order to establish attention we made the numeric simulation for
a asteroid trajectory given by parameter ϕ = 3.19 (see fig. 9). Precisely, using
numeric simulation we have calculated changed a semi-major axis change
a + δa and in consequence the change in period ∆T = 3

√
aδa

GM⊙
, which is the

first order Taylor approximation of the third Kepler’s Law T 2

a3
= 4π2

GM⊙
. The

final result dependence ∆T (α) is shown on the fig. 10.
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tCollision with angle α on

Sun
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V
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Figure 9: asteroid - spacecraft collision with the spacecraft velocity direction
α ∈ (0, 2π) on a fixed point θ = 1.9. The period change ∆T (α) dependence
on α is shown on the fig.10.
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Figure 10: The resulting dependence ∆T (α) for a trajectory given by ϕ =
3.19. One could see, that vertical change of the asteroid velocity gives nearly
zero effect. Therefore the best possible angle for spacecraft to hit the asteroid
is parallel to the asteroid velocity.

3.4.2 The place of collision dependence

In this subsection it is assumed that the spacecraft hits the asteroid in a
place −→r given by an angle θ in polar coordinates related to sun (see fig. 11)
and the angle of spacecraft velocity is fixed (in the simulation it is parallel
to the velocity vector of the asteroid with opposite direction). The total
velocity Vs of the spacecraft is also fixed. We ask, how the change in period
δT depends on the place around the trajectory where spacecraft hits asteroid.
Analogically as before, in this consideration we assume only trajectories on
plane, and we calculate the change in period from the value of semi-major
axis. In order to establish attention we made the numeric simulation for a
asteroid trajectory given by parameter ϕ = 3.19 (see fig. 11).
The result of this simulation is depicted on fig.12.
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Figure 11: asteroid - spacecraft collision with the fixed spacecraft velocity
direction on a point given by θ ∈ (0, 2π). The period change ∆T (θ) depen-
dence on θ is shown on the fig.12.
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Figure 12: The resulting dependence ∆T (θ) for a trajectory given by ϕ =
3.19. The biggest change of period is in the angle θ ≈ 1.9 which correspond
to the perihelion.

As we see, in the case ϕ = 3.19 the optimal way to hit the asteroid is to
do it in the perihelion and use velocity of spacecraft parallel to the velocity
of asteroid. But taking another value of ϕ for closed orbits we would get
the same results (just using analogical simulation). Therefore we have found
the optimal way to disturb the period of asteroid and the general period
dependence on place and angle of hit.

3.5 Sun - Earth - asteroid system and the conditions for
thwarting an imminent collision

Our basic assumption, allowing us to simplify calculations vastly, while not
departing too far away from the exact description, is that all bodies in the
system are moving in one plane.
In general, when the calculations in our model concern locations not in the
close proximity of Earth, its gravitational field is several orders of magnitude
weaker than that of Sun and can be neglected. In the case, when we track
an object that approaches Earth’s proximity, however, the situation is more
subtle and how we treat an effect of Earth’s gravity then, will be explained
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in more detail later.
The diameter of an asteroid is more than four orders of magnitude smaller
than the diameter of Earth, therefore we can safely treat the asteroid as a
point mass, when determining if a collision with Earth would occur. For
any sensible assumption about asteroid density, also the trajectory of earth
would not be altered in a measurable way by the asteroid, so we do not take
that effect into the account.
For a given orbit around sun, we can have one or two x-areas, defined as the
spots in Solar System, where the Earth would lie at the moment of collision,
should we not alter asteroid’s trajectory in any way. For a given event we
set a default time and x-area, where collision is normally expected to hap-
pen and we say, that if the trajectory corrected after spacecraft hit imply no
collision close to this time and area, the object has missed the Earth. We do
not consider next possible events for this object, then.
The probability of an asteroid on a given orbit hitting the earth in general
is so small, that after missing one unlikely opportunity for collision, that
asteroid is no more likely to threat earth in the future as any other similar
object.

To simplify the problem, let us consider which parameter of the trajectory
is the best to use during calculations if the asteroid hits Earth.
At first, time of the asteroid-spacecraft collision is much shorter than the
period of asteroid orbit, so we assume that this collision is just immediate
transfer of momentum to the asteroid. Then the parameters of asteroid’s tra-
jectory change instantly. The new trajectory could miss Earth in two ways.
The change of the trajectory itself and the change of the time when asteroid
cross the Earth trajectory.
One could characterize the orbit trajectory of an asteroid by the period T
and the semi-major axis a. They are connected with the Kepler’s third law:
T 2

a3
= const.. Therefore scaling a by a factor λ scale T by factor λ

3
2 . After

collision the change in period is greater than the change in semi-major axis.
Moreover, when the semi-major axis change, it stays the same all the time,
but if period changes, then the difference of time arriving becomes grater in
each encirclement. In other words, when we change the period by ∆T , then
after three encirclements the total time difference of crossing Earth trajec-
tory becomes 3∆T .
Taking this paragraph into consideration we use only time-difference condi-
tion of making asteroid to miss Earth.
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3.6 Hit or miss - the simplest model

Having obtained the change of asteroid’s period after collision we have to
answer the fundamental question, that is: how it affects the collision of as-
teroid and Earth. We say that if n∆T > Rz

v
, where v is Earth’s velocity and

n is the number of periods asteroids makes from the hit time to potential
collision time, asteroid will miss the Earth. Our reasoning here is that as-
teroid will be in collision point n∆T earlier comparing with the scenario in
which we do not hit asteroid and do not disturb its period. So for Earth to
be safe it has to be further than Rz from the collision point and from that
we get our condition.

We made several approximations here. Firstly we do not consider the
disturbance of asteroid’s trajectory and we can make that because, as it is
stated in one of previous chapters, hitting the asteroid greater disturb its
period than semi axes, and period disturbance grows every period while axes
disturbance stays the same, and that is why the later was neglected. Secondly
we do not directly consider the attraction force between asteroid and Earth,
which in first approximation may be reasonable because asteroid velocity is
greater than escape velocity and even if Earth influences asteroid’s trajectory
asteroid will not hit Earth unless it is because their trajectories around the
Sun. The later probably bigger approximation could be easily reduced by
numerical simulation of the collision.

4 Result
According to section Hit or miss - the simplest model the minimal

number of total laps must be at least n = Rz

v∆T
. In order to get the answer

in Earth’s years we must rescale the result by a factor year
period

. Therefore the
result counted in the number of years is y = Rz ·365

v∆T (ϕ)·T (ϕ)
., where period T is

counted in days.
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Figure 13: The minimal time amount in which spacecraft have to hit as-
teroid in order to avoid collision with Earth. These results come from the
calculation of the period-change caused by collision with spacecraft. The
approximate period of the asteroid’s orbits is about T ∼ 180 days, therefore
the asteroid needs from 2 to 3 full sun encirclement to avoid collision with
Earth.

5 Summary
Our attitude was to look at the problem as a description of a possible real

- life threat to Earth and consider simplifications that won’t lead us away
from the possible realistic character of such an asteroid collision event. We
have Interpreted the problem as a task of finding the approximate minimum
time between a spacecraft impact to asteroid and potential asteroid impact
to Earth for any possible asteroid with closed orbit around the Sun, that
result in a "trajectory to directly impact the Earth at a speed of 25 km/s",
understood according to the section 2.1. We assumed that the spacecraft
shall only be used as a kinetic impactor. We have abstained from considering
minute details of all possible spacecraft routes inside the Solar System and
decided to adopt single estimate of the spacecraft momentum at impact,
based to a significant extent on a recent NASA DART mission, that was
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very similar to the kind of spacecraft mission we would have to consider.
We analyzed the very effect of the spacecraft impact on asteroid momentum,
as well as a requirement for an asteroid’s orbital period needed for Earth
miss. We have used numerical simulations of a planetary dynamics to obtain
all the results and final dependence of the minimal time before asteroid’s
impact to earth needed for the spacecraft, on a parameter characterizing all
the relevant asteroid orbits.
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