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Abstract

In this essay, we explore the scenario where we need to deploy a spacecraft, whose
initial total mass is 20, 000kg, to collide with a coming asteroid, so as to deflect it from
our Earth, and we aim to find the time t before Earth impact when our spacecraft
should hit the asteroid. To do this, we first divide the whole process into three major
stages to clarify our model: launching the Spacecraft, collision between the asteroid
and the spacecraft, drifting of the asteroid. Before investigation into these stages, we
discuss about the scales of important physical quantities to simplify our model, and
to take the influence of the atmosphere into account. Afterwards, we study the three
stages one by one, and acquire our result, that the spacecraft should hit the asteroid 14
years before it hits Earth, if we take the effective exhaust velocity vr of the spacecraft
as 4.4× 103m/s. Finally, we evaluate the result’s feasibility, and point out the decisive
effect of vr on t: for vr = 5.0× 104m/s, t = 0.67year.

Our model is based on physical principles and is simplified based on the scales of
quantities. Therefore, our model is strong in generalizability and clarity. However, it
may cost our model accuracy due to some rough estimations and presumptions.

Keywords: Rocket Equation, Collision, Conservation of Momentum, Conserva-
tion of Angular Momentum, Conservation of Energy
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1 Introduction
1.1 Background
The impact of sufficiently large asteroids on the Earth would be catastrophic for mankind and other
creatures because it may cause massive tsunamis or multiple firestorms. [1] A possible way to
avoid asteroid impact is to launch a spacecraft and crash it into the asteroid to divert the asteroid
from its course. On 26, September 2022, a probe launched by NASA intentionally crashed into
Dimorphos and shortened its orbital period by about 32 minutes, which proved the feasibility of
the aforementioned method. [2] Determining how much time before the impact would be needed
for the spacecraft to hit the asteroid is crucial to a successful hit and is thus worth investigating.

1.2 Problem Statement
We need to launch a spacecraft, whose initial total mass is 20, 000kg, to collide with a coming
asteroid at a initial velocity of 25km/s and with a diameter of 100m, so as to deflect it from the
Earth. We are required to find the time t before Earth impact when our spacecraft should hit the
asteroid.
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2 Notations

Symbols Description
m0 Initial mass of the spacecraft (including the fuel)

vr Effective exhaust velocity of the spacecraft

m1 Mass of the spacecraft at the end of Stage 1

m Mass of the spacecraft before the collision

u Velocity of the spacecraft

p Momentum of the spacecraft

p∗ Maximum momentum of the spacecraft (before the collision)

M Mass of the asteroid

r Radius of the asteroid

d Diameter of the asteroid

ρ Density of the asteroid

ρa Assumed density of the asteroid

P Momentum of the asteroid

v0 Initial velocity of the asteroid

v// Component of the velocity of the asteroid in the direction to the Earth

v⊥ Component of the velocity of the asteroid in the direction perpendicular to the Earth

ME Mass of the Earth

R Radius of the Earth including the atmosphere

R0 Radius of the Earth excluding the atmosphere

H Equivalent thickness of the atmosphere

G Gravitational constant

l Distance between the spot of collision and the Earth

t Time the spacecraft needs to hit the asteroid before the impact

Here the main notations are defined while their specific values will be discussed and given later.

3 General Analysis
3.1 Stages of the Entire Process
In this problem, we are required to launch the spacecraft from its original orbit to the spot of
collision, design its collision with the asteroid, and then monitor the asteroid’s trajectory so that it
will not collide onto the Earth. Thus, the physical process can be divided into three major stages:
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launching the spacecraft to the collision spot; collision between the asteroid and the spacecraft;
drifting of the asteroid to the Earth.

1. In the first stage, we need to launch the spacecraft from its low-earth orbit to the collision
spot. Since spacecrafts need to eject burned fuel products to accelerate, this process will
affect the spacecraft’s mass when it reaches the spot.

2. In the second stage, we need to adjust the spacecraft to a certain direction and accelerate it to
a certain speed, so that it may have the maximum impact on the asteroid’s future trajectory.
We also need to calculate the asteroid’s final velocity.

3. In the third stage, we need to analyze the asteroid’s movement after the collision. In order to
calculate the time the collision needs to happen before the impact, we study the case where
the asteroid barely misses the Earth.

There are also possible minor stages, such as the case where the asteroid passes through the
Earth’s atmosphere. They will be qualitatively discussed in the next subsection on the basis of
scales of important quantities.

3.2 Scales of Important Quantities
It is also important to consider the scales of important quantities, so that we may qualitatively
decide on the nature of some physical processes, and simplify our model or calculation in some
steps. Below are some important quantities to consider:

3.2.1 The Spacecraft’s Effective Exhaust Velocity vr

The spacecraft’s effective exhaust velocity vr is defined by the relative velocity to the spacecraft at
which the burned fuel products are ejected. It is crucial to further calculations of the spacecraft’s
acceleration process. This parameter differs from type to type, and we choose vr = 4.4× 103m/s,
which is the effective exhaust velocity of a typical liquid-fuel rocket, as our reference value. [6]

3.2.2 Scale of the Asteroid and its Momentum Vs. the Spacecraft

There are many categories of asteroids, and their densities vary accordingly. As shown in Figure 1,
we can see that the density of most asteroids falls in the range of 1.0 ∼ 5.0g/cm3. [8] Due to this
lack of information, we assume the density of the asteroid ρ = ρa = 2.0× 103kg/m3 to calculate
the final values as a reference, and also to compare the scales of some quantities.

Here, we have the mass of asteroid M = 1
6
πd3ρ = 5.236 × 105ρ. Assume ρ = ρa, M =

1.0× 109kg. Since the initial mass of the spacecraft m0 = 20000kg, m0

M
∼ 10−5, the spacecraft’s

mass at any stages is insignificant compared to that of the asteroid.

The momentum of the asteroid is given by P = Mv0 = 2.6× 1013; the maximum momentum
of the spacecraft (without initial velocity) is given by p = 1

e
vrm0 = 3.2 × 107kg · m/s (this

equation will be proved in the second stage). Thus, p
P
∼ 10−6, which implies that the spacecraft’s

momentum is also insignificant compared to the asteroid.
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Figure 1: Diameter v.s. Density of Asteroids

Therefore, we can deduce that it is impossible for the spacecraft to collide with the asteroid
head-on and push it back; instead, the spacecraft needs to give the asteroid a side-push and make
its trajectory deviate. This will be quantitatively proved in the second stage.

3.2.3 Scale of the Atmosphere and its Effect

The atmosphere contains particles, which, when the asteroid passes through, will exert a drag force
on it in the opposite direction to its velocity. [3] This force will decrease the asteroid’s velocity
and thus decrease its angular momentum, which may cause the asteroid to fall to the ground when
it would otherwise barely passes through the Earth. Therefore, we should add the height of the
atmosphere H to the Earth’s radius R0, and keep the asteroid out of the final sum R = R0 + H .
We will briefly discuss about what value of H we should take.

The Earth’s atmosphere can extend to 10, 000km if the Exosphere is included, which is even
larger than the Earth’s radiusR0 = 6378.1km. However, both the Exosphere and the Thermosphere
contain too less particles and won’t interfere with the movement of the asteroid. Thus, we only
need to consider the layers below, which only extends to 80km’s height from the ground.

In addition, the atmosphere’s density decreases exponentially with the increase of altitude: [4,5]

ρair(h) = ρair(0)e
h

Hn (1)

where h is the altitude, andHn, the scale height, or the increase in altitude for which the atmospheric
pressure decreases by a factor of e, is equal to 10.4km for air. Also, as for the air drag,

FD =
1

2
ρairv

2CDA (2)

where FD is the drag force, v is the asteroid’s speed with respect to the air, CD is a constant(CD =
0.47 for spheres), and A is the reference area (A = πr2 for spheres, with r being the radius), from
which we can see FD ∝ ρ.
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Thus, when calculating the work the air drag force does on the asteroid,

WD = −
∫ +∞

0

FDdh ∝
∫ +∞

0

ρair(h)dh

∫ +∞

0

ρair(h)dh = Hn

Therefore, we can use Hn as the equivalent height of the atmosphere.

Since this estimation is rather rough, we only retain one significant figure of Hn, so R =
R0 + Hn = 6.39 × 106m. We will use R instead of R0 as the Earth’s radius in the calculation
below.

4 First Stage: Launching the Spacecraft
4.1 Introduction, Presumptions and Observations
First, we look into the stage when the spacecraft travels from the Earth to the spot of collision.
We want to study in this stage how much of its initial mass m0 is lost. In order to simplify our
calculation, we design this process such that the spacecraft is accelerated for a short time from its
initial speed u0 to a speed u1, and then drift to the spot of collision, and when it reaches there, all
its speed is lost; the velocity always points towards the collision spot. We further assume that:

1. The acceleration process is short enough, so that we can ignore the gravitational force of the
Earth in this process. (This will be compensated when considering the change of gravitational
energy, where we choose the starting point as the original orbit of the spacecraft.)

2. The spot of collision is far enough, so that the spacecraft’s gravitational energy equals to
zero (choose the points infinitely far away for the Earth as zero potential point) when the
spacecraft gets there. (This will be confirmed in the third stage.)

4.2 Calculation of m1

Since the spacecraft is initially in low Earth orbit, its gravity acts as the centripetal force.

u2
0

R0 + h
=

GME

(R0 + h)2
(3)

where u0 is the initial velocity of the spacecraft, h is the distance from the low Earth orbit to the
Earth’s surface, G is the gravitational constant, R0 is the radius of the Earth without the atmosphere,
ME is the mass of the Earth, and H is the equivalent thickness of the atmosphere. Here we take
h = 2, 000km. We thus get u0 = 6.793× 103m/s.

We then consider the acceleration process. The rocket’s final speed is given by the rocket
equation: [7]

u(m) = u0 + vrln
m0

m
(u(m) > u0) (4)
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where u is the velocity of the spacecraft, m0 is the initial mass of the spacecraft (m0 = 20, 000kg),
and vr is the effective exhaust velocity of the spacecraft.

In order that the rocket can reach the collision spot, by the conservation of energy, we derive
that:

1

2
mu2 −G

MEm

R0 + h
= 0 (5)

Combining the two equations, we get u = 9.607× 103m/s, and m = 1.055× 104kg, which is
the value of m1, i.e., the mass of the spacecraft at the end of the first stage.

5 Second Stage: Collision Between the Asteroid and the Space-
craft

5.1 Introduction, Presumptions and Observations
In this stage, we presume that the spacecraft has already arrived at the point where it is to collide
with the asteroid, with its remaining mass m1, and that it can quickly speed up to achieve its
maximum momentum and adjust its direction to crush onto the asteriod as shown in Figure 5.1.
We want to first determine the maximum momentum p∗ it can achieve, and then study its collision
with the asteroid and find the asteroid’s velocity after the collision.

We further make the following presumptions and observations based on the scale of quantities:

1. Both the spacecraft and the asteroid can be modeled as mass points. The diameter of the
asteroid d is 100m; the dimensions of a standard spacecraft are within the range of 1 ∼ 10m.
Thus, the spacecraft can be safely modeled as a mass point; the validity of the second
statement will be proved in the calculation.

2. m1 << M , m << M , and p << P , as is shown in Section 3.2.2. p
P

is even smaller because
the mass of the spacecraft has decreased.

3. The collision is perfectly inelastic. The spacecraft will not stand such a collision and will
thus explode. We assume that the debris will fly off in random directions with respect to
the asteroid, so the center of mass of the whole spacecraft is with the same velocity as the
asteroid.

4. The debris’s velocity only remains the same as that of the asteroid after the collision for a
short time. Therefore, the spacecraft’s mass needs to be accounted only in this stage, but not
in the next stage.

5.2 Calculations of m, p∗, α, v⊥ and v//

We want to first study the maximum momentum the spacecraft can achieve given its initial mass
m1, so that it can give the maximum impact to the asteroid. Since the spacecraft loses all of its
velocity when it reaches the spot, we have

u(m) = vr ln
m1

m
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p∗
m

α

M

r

v0 v//

v⊥

M(+m)

ω

s

Figure 2: Collision Between the Asteroid and the Spacecraft

p(m) = vrm ln
m1

m
where u is the velocity of the spacecraft, and p is of course the momentum of it.

To maximize p(m), we solve dp
dm

= 0 and get the remaining mass

m =
m1

e
= 3.881× 103kg

and the maximum momentum of the spacecraft

p∗ =
vrm1

e
= 1.708× 107kg ·m/s

This also proves the equation we used in Section 3.2.2.

During the collision, both the momentum and the angular momentum of the system are con-
served. As for conservation of momentum, we have:

Mv0 − p∗ sinα = (M +m)v// (6)

p∗ cosα = (M +m)v⊥ (7)
where M is the mass of the asteroid, and denote by v// and v⊥ respectively the component of the
velocity of the asteroid in the direction to the Earth, and perpendicular to the Earth. Then, we get

v// =
Mv0 − p∗ sinα

(M +m)
, v⊥ =

p∗ cosα

M

Since p∗ << P , m << M , we can simplify the Equation (6) to v// = v0 within 10−3 of
relative error. This means we shouldn’t waste any of the spacecraft’s velocity on pushing back the
asteroid, because the effect wound be insignificant (this statement will be further confirmed in the
next section). Thus, we should take α = 0, and we can write the Equation (7) as v⊥ = p∗

M
. Thus,

we have v// = 2.5× 104m/s and v⊥ = 0.016×m/s. We can observe that

v⊥
v//

=
p∗

P
∼ 10−6
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Next, using conservation of angular momentum, we have:

p∗s = (I +mr2)ω (8)

where I = 2
5
Mr2 because of the asteroid’s spherical shape.

Thus, ω = p∗s
I

, and as for the kinetic energy of the asteroid after collision

Ek =
1

2
Iω2 +

1

2
Mv2⊥ +

1

2
Mv2// =

5

4

p∗2s2

Mr2
+

1

2

p∗2

M
+

1

2
Mv20 (9)

The term of rotational kinetic energy 5
4
p∗2s2

Mr2
is insignificant compared to Ek (∼ 10−12) even when

s = r and it reaches its maximum; in addition, we will see in the next stage that no force will
interfere with the asteroid’s rotation, so this proportion of energy will not make any difference.
Therefore, modelling the asteroid as a mass point is also reasonable.

6 Third Stage: Drifting of the Asteroid
6.1 Introduction, Presumptions and Observations
At the beginning of this stage, the asteroid retains its velocity v// = v0 towards the Earth and
acquires a velocity v⊥ = p∗/M . We want to study the case where it barely passes by the Earth
without hitting it, and then find out the minimum distance l where the spacecraft has to collide with
the asteroid, and thus the time t the collision needs to happen before the impact. The diagram is
shown in Figure 3.

We here observe and presume that:

1. The final velocity vf should be tangential to the Earth’s surface.

2. During this drifting stage, the asteroid is only affected by the Earth’s gravitational force. This
presumption will be fallible if d is so large that the asteroid is likely to be affected by other
celestial bodies’ gravitational field, and in that case, predicting its trajectory will be extremely
difficult. We will come back to this presumption after we have calculated the value of l and
provide justification.

6.2 Calculations of vf , l and t

During this stage, because the asteroid is only subject to a central, conservative force, the gravita-
tional force of the Earth, its angular momentum with respect to the Earth’s center and the energy
of the asteroid-Earth system is conserved. Choosing the points infinitely far away for the Earth as
zero potential point, we have:

v⊥l = vfR (10)
1

2
v2// −G

ME

l
=

1

2
v2f −G

ME

R
(11)

we only retain the term 1
2
v2// to represent the asteroid’s kinetic energy after collision, because other

two terms are too insignificant, as discussed in Section 5.2.
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We first look at the second equation. Since 1
2
v2// = 3.13× 108J/kg, GME

R
= 6.23× 107J/kg,

and −GME

R
< −GME

l
< 0, we can deduce that 25km/s < vf < 27.4km/s, or v0 < vf < 1.1v0.

Turning to the first equation, we acquire that l = vf
v⊥
R, where v⊥

v//
∼ 10−7. Therefore, l

R
∼ 107, and

we can safely ignore the term −GME

l
. This also confirms our presumption in Section 4.1.

Thus, we can calculate vf from the second equation: vf = 2.74 × 104m/s. From the first
equation, then, we derive l = 1.1 × 1013m (only 2 significant figures are retained because ρ, thus
M , thus v⊥ only has 2 significant figures).

Therefore, t is given by t = l
v//

= 4.3× 108s = 5.0× 104day = 14year.

7 Evaluation
7.1 Evaluation of the Result
The result shows that the collision needs to happen about 14 years before the impact. This is a
very large number compared with NASA’s plan, where the probe was launched only 10 months, or
0.83 years before the collision. [2] Such a long drifting time may make the spacecraft susceptible to
attrition and extra influences like other passing celestial bodies. In addition, l = 1.1× 1013m >>
1AU = 1.5× 1011m, which may be too far a distance. Thus, this result is not satisfying.

M
v⊥

v//

l

R vf

Figure 3: Drifting of the Asteroid



Team # 460 Page 11 of 12

Such a long time mainly comes from the relatively huge mass of the asteroid, and the small
value of vr = 4.4×103m/s. If we increase the value of vr to 5.0×104m/s, which can be generated
by the Hall-effect thruster, we getm1 = 1.891×104kg, p∗ = 3.477×108kg ·m/s, v⊥ = 0.332m/s,
l = 5.3 × 1011m, and can reduce t to 2.4 × 102day or 0.67year. This result is satisfying, and
shows the decisive influence of vr on our result. Thus, it is essential that technology that can further
increase vr is developed.

7.2 Evaluation of the Model
Our model is based on physical principles instead of data analysis; meanwhile, based on the scales
of quantities, the model and some calculations are simplified. Thus, our model enjoys the following
strength:

7.3 Strength
• Since the model is based on physical principles, it is easy to generalize our model to similar

cases.

• Analysis of the scales of quantities greatly simplifies our model and makes it more under-
standable. Moreover, it helps to clarify the main stages of the model.

Our model also has the following weaknesses:

7.4 Weakness
• Some parameters, such as the asteroid’s density ρ, has few significant figures due to lack of

information. This may decrease the accuracy of our model.

• Some estimations we have made, such as taking the equivalent thickness of the atmosphere
H as Hn, may be too rough, and can decrease our accuracy. (However, here, since the
atmosphere’s possible equivalent thickness is much smaller than the Earth’s radius ME , the
inaccuracy is well-controlled.)

8 Conclusion
In this essay, we explore the scenario where we need to deploy a spacecraft to collide with a coming
asteroid, so as to deflect it from our Earth. We first divide this process into three major stages
to clarify our model, and discuss about the scales of important physical quantities to simplify it.
Then, we study the three stages one by one, and acquire our result t = 14year for the parameter
vr = 4.4× 103m/s. Finally, we evaluate the result’s feasibility, and point out the decisive effect of
vr on t.
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