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Problem B

The Best Strategy for Penalty Kicks

Abstract

Exploring the optimal penalty kicks strategies has practical significance for football players.
In this paper, we study the motion of a spinning soccer ball based on aerodynamics during
its flight. Taking air buoyancy, gravity, air resistance and Magnus force into consideration, we
provide the motion equations of the ball and solve the set of ordinary differential equations
numerically. Given any initial velocity value and initial angular velocity value and direction,
we can obtain the trajectory of soccer. We can also calculate the range of the reasonable
direction angles θ and ϕ in the spherical coordinate system which can reach upper corners.
Taking v0 = 25m/s, ω⃗ = 15k⃗ as an example, we find the the range of θ is [76.7◦, 79.8◦] and the
range of ϕ is [75.5◦, 84.5◦] and [100.0◦, 110.5◦]. Fixing ω⃗, we gain the minimum value of initial
velocity v0min = 20.17m/s. We then consider two modes of defense of the goalkeeper:vertical
movement defense and diving save. We firstly present the success probability distribution of
defense by Monte Carlo Simulation. Subsequently we analysis the cases that the shooting player
will definitely avoid the goalkeeper by finding the dead angles.It’s found that the dead angle
area is two symmetrical rectangles. Taking v0 = 25m/s, ω⃗ = 15k⃗ as an example again, the range
of θ is [76.95◦, 78.95◦]and the range of ϕ is [75.5◦, 75.9◦] and [110.3◦, 110.6◦].
Keywords: upper corner, Aerodynamics, Ordinary differential equation
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1 Introduction

1.1 Background

Penalty kick, awarded when an offence punishable by a direct free kick is committed by a player
in their own penalty area or a draw after extra time occurs , is sometimes seen in soccer matches.
When a penalty kick is taken, a soccer player will take a shot at the goal from the penalty mark
defended only by the opposing team’s goalkeeper. As penalty kick sometimes plays an critical role
in scores, soccer players might emphasize their training in penalty kick skills. The skills involve not
only kick skills but also some strategies to mislead the opposing goalkeeper.

The force and flight trajectory is always analysed based on aerodynamics. Learning the rule of
soccer’s movement have practical significance for kickers to improve their success rate of penalty
kicks. And some researches on soccer movement have be conducted by previous scholars.

1.2 Problem Restatement

When a penalty kick is taken, one player takes a single shot which is defended by one goalkeeper
of the opposing team. The shooting player kicks the ball at the penalty mark, which is centered 11
meters from the goal. The goal is regarded as a rectangle 7.32 meters wide and 2.44 meters tall. The
shooting player prefers to aim for an upper corner of the goal to avoid being defended. Our main
task is to consider the initial ball velocity and spin for a successful shot to an upper corner. We also
have to consider how to create the optimal initial ball velocity and spin to have the best probability
to avoid the goalkeeper.

1.3 Problem Analysis

Firstly we need to set up the situation for kicking a penalty. The image of the penalty area is
shown below:

Figure 1: The penalty area[1]

To solve the first question, we have to define the upper corners of the goal. In general, we divide
the area of the goal into nine equal parts, and consider the upper left corner and the upper right
corner as the upper corners, which are shown in the figure below.
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Figure 2: The upper corners

In order to obtain the initial ball velocity and spin for a successful shot to an upper corner,
we have to analyze the motion of the ball and find the trajectory by analyzing the forces based on
aerodynamics and solving dynamic equation system. The reasonable initial velocity and spin angular
velocity should be a range.

To solve the second question, we have to consider the defense of the goalkeeper. Firstly we consider
the probability of the goalkeeper’s success in defending different areas. The shooting player tends
to kick the ball towards the areas with a relatively lower probability of being defended successfully.
Then we consider the areas that cannot be defended by the goalkeeper which will ensure the success
of shooting.

2 Assumptions and Notations

2.1 Assumptions

• The parameters of soccer are determined according to standards set by the FIFA(International
Federation of Association Football).

• Assuming that both the kicker and the goalkeeper are high level football players, which means
that the kicker can accurately hit the ball to the target position and there is no possibility that
the goalkeeper predict a totally wrong direction of the ball.

• The goalkeeper stands in the middle of the goal line at the start.

• We assume that the air is even and the situation is at normal temperature and pressure as air
density varies at different temperatures and pressures.

• Environment does not change much during the flight of the ball, so we do not consider the
change of temperature and the influence of natural wind.
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2.2 Notations

Table 1: Notations

Symbol Definition Numeric Value

r The radius of soccer 108mm
m The mass of soccer 430g
g The gravitational acceleration 9.8m/s2

ρ0 The mass density of air 1.27kg/m3

Ca An air resistance coefficient 0.4
H The height of the goal 2.44m
W The width of the goal 7.32m

3 Model

3.1 The Flight Trajectory of a Spinning Soccer

In order to find out the proper initial ball velocities and spins which will result in a successful
shot to an upper corner,we firstly consider the flight trajectory of a spinning soccer. In addition to
being affected by gravity, the ball also interacts with the air during the flight. In our Model, the
interaction of the football with the air includes air resistance, air buoyancy and the Magnus force
generated by rotation.

Before solving the problem, we establish a spatial Cartesian coordinate system. The penalty mark
is the coordinate origin, while the positive direction of y-axis points to the center of the goal. When
facing the goal, the positive direction of x-axis points to the right, and that of z-axis is straight up
vertically. The example image is shown below:

Figure 3: The spatial Cartesian coordinate system

3.1.1 Air Buoyancy and Gravity

As both air buoyancy and gravity are constants in the vertical direction, it is easy to gain their
expressions. According to Archimedes principle, air buoyancy can be calculated:
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F⃗float = −ρ0g⃗V = −4

3
πr3ρ0g⃗ (1)

G⃗ = mg⃗ (2)

3.1.2 Air Resistance

The relationship between air resistance and flying speed can be obtained through a simplified
model. We consider a round disk which is the maximum cross-section of the sphere and is orthogonal
to the direction of velocity[2]. The example image is as follows:

Figure 4: The airflow on both sides of the disk

The airflow on the right is not passed through by the ball, whose relative flow velocity is v1 = v
and gas pressure is p1 , while that on the left is blocked by the ball with the relative flow velocity
v2 = 0 and gas pressure p2. From Bernoulli’s principle, we can find an equation:

p1 +
1

2
ρ0v

2
1 = p2 +

1

2
ρ0v

2
2 (3)

The pressure difference between the two sides is:

p1 − p2 =
1

2
ρ0v

2 (4)

The effective area of action of pressure is S = πr2, so the resistance to the disk is:

Ff = (p1 − p2)S =
1

2
ρ0Sv

2 (5)

This is a simplified expression of resistance. In reality, the situation is more complicated because
the ball is not a disk, and the air rubs against the surface of the ball. We introduce an air resistance
coefficient Ca to correct the equation, and according to relevant document[3], we find that Ca = 0.4.
Finally, we gain the vector form of the equation:

F⃗f = −1

2
Caρ0Sv

2 v⃗

v
= −0.2πr2ρ0vv⃗ (6)
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3.1.3 Magnus Force

Due to the combined influence of the spinning of the soccer ball and air viscosity, a circulation
is generated around the soccer ball. On the side where the air flow is in the same direction as the
direction of spinning, the air flow rate accelerates, while on the other side in the opposite direction,
the air flow rate slows down.

Figure 5: The Magnus effect[4]

According to Bernoulli principles, the pressure decreases on the side where the flow rate increases,
while the pressure rises on the side where the flow rate slows down[5]. As a result, the pressure
difference between the two sides exerts a lateral force on the football called the Magnus force. From
Kutta–Joukowski theorem, we obtain the expression of Magnus force[6]:

F⃗m = −8

3
πr3ρ0ω⃗ × v⃗ (7)

3.1.4 The Effect of Air Resistance on Ball Spin

Due to the tangential friction between the ball and the air as it rotates, the angular velocity of
the soccer actually changes with time rather than being a constant. Like the normal friction which
impacts the velocity of the ball, the effect of tangential friction can be written as dw

dt
= −kw, where

k is a coefficient related to radius of ball, density of air and Reynolds number of air. So the law of
angular velocity changing with time is ω = ω0e

−kt.
As the rate of angular velocity change is proportional to the moment of tangential friction and

the moment is cross product of radius and friction, the coefficient k is proportional to the cube of
the radius. The radius of soccer is 0.108m, so the order of magnitude of k is the negative cube of 10.
Plus, the flight time of the football is less than one second. So the final angular velocity is less than
ω0 and larger than ωe−10−3

= 0.999ω0, which can be regarded as a constant ω0. Therefore, we can
conclude that the change of angular velocity due to tangential friction can be neglected.

3.1.5 Derivation of Motion Equation

As we have obtained the expressions of gravity, air buoyancy, air resistance and Magnus force,
the motion equation can be present:

md2r⃗
dt2

= G⃗+ F⃗float + F⃗f + F⃗m

= mg⃗ − 4
3
πr3ρ0g⃗ − 0.2πr2ρ0vv⃗ − 8

3
πr3ρ0ω⃗ × v⃗

(8)
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Figure 6: Forces analysis

We decompose velocity and angular velocity into three directions (⃗i,⃗j ,⃗k are the unit vectors of
x,y,z axes):

v⃗ = vx⃗i+ vy j⃗ + vzk⃗

ω⃗ = ωx⃗i+ ωy j⃗ + ωzk⃗
(9)

Then we can decompose the vector motion equation into three component forms:
md2x

dt2
= −0.2πr2ρ0

√
vx2 + vy2 + vz2 · vx + 8

3
πr3ρ0 (vy · ωz − vz · ωy)

md2y
dt2

= −0.2πr2ρ0
√
vx2 + vy2 + vz2 · vy + 8

3
πr3ρ0 (vz · ωx − vx · ωz)

md2z
dt2

= −0.2πr2ρ0
√
vx2 + vy2 + vz2 · vz + 8

3
πr3ρ0 (vx · ωy − vy · ωx)−mg + 4

3
πr3ρ0g

(10)

3.1.6 Solution to the Motion Equation

The motion equation is a set of second-order ordinary differential equations and there is no
symbolic solution. We write Python codes to solve it numerically, and we can easily obtain the flight
trajectory as long as giving the initial velocity v⃗0 and angular velocity ω⃗0.

According to Ravenscroft’s research[7], the ball initial velocity can reach 23.9 ±1.2(Unit :
m/s)(average player). So our calculation is based on this data. Here we provide an example to

show the trajectory (v⃗0 = −3.40⃗i+ 19.27⃗j + 4.16k⃗(Unit : m/s), ω⃗0 = 15k⃗(Unit : rad/s)):

Figure 7: A trajectory as an example
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Due to the value and direction of initial velocity, as well as the value and direction of initial
angular velocity are unknown, it is difficult to judge the landing point of the trajectory. To simplify
the solution, we suppose the value of initial velocity is constant and the direction is variable, and
suppose the angular velocity is also a constant. In this case, we can get the range of initial velocity
direction angles that the ball can be kicked into the upper corner.

Considering that the value of initial velocity is v0 = 25(Unit : m/s), we transform Cartesian
coordinates into spherical coordinates and using θ and ϕ to express the direction:

vx0 = u0 sin θ cosφ
vy0 = u0 sin θ sinφ
vz0 = u0 cos θ

(11)

When it comes to the angular velocity of spinning, we present two possible cases specifically.

Case1: The angular velocity contains only z-direction component We fix the angular
velocity at ω⃗ = 15k⃗(Unit : rad/s). The goal area is divided into nine rectangles of the same shape,
with the upper corners including the upper left corner and the upper right corner. According to the
above initial conditions, we change θ and ϕ to obtain the range of direction angles in which the ball
can be shot into the upper corners.

We solve the problem by writing Python programs, and finally we obtain an image of the reason-
able direction angles.

Figure 8: The trajectories with reasonable initial direction angles with ω⃗ = 15k⃗

The range of θ is [76.7◦, 79.8◦] and the range of ϕ is [75.5◦, 84.5◦] and [100◦, 110.5◦].
We then change the value of the initial velocity, and traversed a set of initial velocity values

through Python programming to obtain the minimum initial velocity that can reach the upper
corners. We finally find out that when the value of initial velocity is less than v0min = 20.17m/s,
there is no possibility of the ball to hit the upper corners.

Case2: The angular velocity contains x,y,z-direction components We assume the angular
velocity as ω⃗ = 6⃗i+ 6⃗j +6k⃗(Unit : rad/s). we obtain an image of the reasonable direction angles as
follow.
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Figure 9: The trajectories with reasonable initial direction angles with ω⃗ = 6⃗i+ 6⃗j + 6k⃗

The range of θ is [75.29◦, 79◦] and the range of ϕ is [73.5◦, 84.0◦] and [98◦, 108.5.5◦]. When the
value of initial velocity is less than v0min = 20.18m/s, there is no possibility of the ball to hit the
upper corners.

It is worth noting that, comparing with ω⃗ = 15k⃗, the trajectory of ω⃗ = 6⃗i + 6⃗j + 6k⃗ is more
asymmetric, which is the effect of the initial angular velocity.

To sum up, in the condition of the given value of initial velocity and initial angular velocity, the
ball can reach the upper corners if the shooting player kicks it in the range of orientation angles
shown in the image above. As the reasonable orientation angles can’t be expressed by mathematical
language such as equation and inequalitywe only give the range of reasonable orientation angles here.
The specific value range of the direction angle can be obtained by using the code in the appendix.

3.2 The Best Way of Avoiding the Goalkeeper and Making the Goal

To simplify the calculation, the height of the goalkeeper is assumed to be 1.90m, which is recog-
nized as the best height of goalkeepers, and denoted as h. According to relevant document [8],the dis-
tance between shoulders and chin is the 1

2
length of head and the length of head is 1

8
of the whole body.

Therefore the height of the goalkeeper’s shoulder center, denoted as hl, is:hl = h·8−1−1/2
8

= 154.375cm.
Also from the document[8], the length of a person’s arms outstretched is equal to his height.So the
length of goalkeeper’s arm, denoted as l,is l = h · 1

2
= 0.95m.

After getting all the required parameterswe can discuss several different defense methods of goal-
keeper, and calculate the corresponding range that the goalkeeper can reach.

In the following discussion, we will analysing two defense modes:vertical movement defense and
diving save. Vertical movement defence means the goalkeeper stands still, jumps up or squats down
with arms opened. Diving save means the goalkeeper jump left or right to block the ball.

3.2.1 Probability Distribution of Successful Defense

In order to avoid the goalkeeper and make the goal, the first thing is to figure out the probability
distribution of the goalkeeper’s defense. Kickers should shoot the area with relatively small defense
probability. In the following discussion, we will analyse the probability distribution of Successful
Defense and visualize it.

From the former model, the minimum reasonable velocity is 20.17m/s, and the we can calculate
the corresponding maximum flight time 0.65s with Python program. So we assume the maximum
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time for goalkeeper to block the soccer is tmax = 0.65s.

Vertical movement defense Let’s first discuss the vertical movement defense. If the goalkeeper
stand still with arms opened, then in the middle upper part of the goal, the reachable area consists
of a circle drawn by arms.If the goalkeeper squats down, then the area under the former circle can
all be reached. With a maximum descent acceleration g, the time consumption of squatting down is√
2hl

g
= 0.56s, which is feasible because it is shorter than tmax.

Figure 10: The area reached by vertical movement defense without jump

From the above graph and results, we can find that with a jump higher than 0.90m, the goalkeeper
can reach all the area above the bar. Then we analyze the possibility of a jump higher than 0.9m
and in reasonable time. A professional athlete can jump 1 meter high. And we can estimate the time
as

√
2 · g ·∆h = 0.43s, which is a reasonable time. Therefore, a jump higher than 0.90m is feasible.

So in vertical movement defense mode, the reachable area inside the goal is a rectangle 2l = 1.9m
wide and H = 2.44m tall.

Figure 11: The area reached by vertical movement defense

Diving save Next, we discuss the diving save. Again we assume the goalkeeper can jump to 1
meter high. And the acceleration distance, which is replaced with the estimated squat height 40cm,is
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denoted as sa. Then the take off speed v0 can be calculated as v0 =
√
2g∆h = 4.43m/s. The force

FN on the ground when taking off and the acceleration time t0 satisfy the equation set:

v20 = 2(FN

m
− g)Sa

v = (FN

m
− g)t0

(12)

After solving the equation set, we get:FN

m
= 34m/s2, t0 = 0.181s. The goalkeeper may jump either to

the left or to the right. The angle between the acceleration force from the ground FN and the ground
is denoted as α. Consider FN and the gravity mg, we get the horizontal and vertical acceleration as
ax = FN

m
· cosα, az = FN

m
· sinα− g.

Figure 12: Force analysis of goalkeeper when taking off

After multiplying t0, we get the taking off speed:{
vx =

FN

m
· cosα · t

vy = (FN

m
· sinα− g) · t (13)

So the coordinates of the goalkeeper is:{
x = vxt

y = y0 + vyt− 1
2
gt2

(14)

where y0 is the initial height of the shoulders. Eliminating time t, we get the trajectory of goalkeeper’s
shoulder as:

y = y0 + vy
x

vx
− 1

2
g
(
x

vx

)2

(15)

Up to now, all the variables such as vx, x is determined only by the angle α. What we need to
do now is find the α maximizes the area below the trajectory and also in reasonable time, which is
relative to the reachable area by diving save mode.

The area can be calculated as:

S =
∫ xt

0

(
y0 + vy

x

vx
− 1

2
g
(
x

vx

)2
)
dx = y0xt +

1

2

vyx
2
t

vx
− 1

6
g
x3
t

v2x
(16)

where xt is the largest x the goalkeeper’s shoulder can reach in tmax and xt = vx · tmax.
We writing python codes to get the α that maximizes S. α = 0.64rad. And we can plot the

trajectory as follow.
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Figure 13: The trajectory of goalkeeper’s shoulders

We can also obtain xt = 3.235m.
Considering the arms of goalkeeper, we draw the farthest points arms can reach, and interpolate

them. After interpolation, we can get the reachable area by diving save mode.

Figure 14: The area reached by diving save

Considering the two defense modes, the probability distribution is the sum of them. We assume
that the success probability of a goalkeeper’s defense is a two-dimensional normal distribution in x
and z directions.

At the same time, we give different weights to different areas in the goal, considering that different
defensive approaches of goalkeepers have different defense areas and they overlap. The weighting
method is based on the overlaps of the different defensive areas. The more times the defense areas
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overlap, the greater the weight is. So, we can define r(x, z) to denotes the success possibility:

r(x, z) = nfxz(x, z) (17)

Here, n denotes the number of times the defensive area overlaps. fxz(x, z) is the normal function on
the xOz plane. We can use the Monte Carlo simulation method to study the the distribution of the
success possibility, shown in Figure 15. The lighter the color appears, the higher the probability of
successful defense is .

Figure 15: Distribution of success possibility

3.2.2 The Dead Angle of the Goalkeeper’s Defense

Instead of seeking to shot the points with small probabilities that a goalkeeper can reach, we
shot the points that goalkeeper can’t reach any way due to constraints such as physical limitation.
However, we neglect the time limit tmax = 0.65s as we are pursuing the absolute died angle area.

Also we discuss these two defense methods of goalkeeper, and calculate the corresponding range
that the goalkeeper can reach. Then, we find the intersection of all the ranges that can be reached,
and find the difference between the reachable range and the goal range, which is the dead angle zone.

Vertical movement defense The vertical movement defense mode is the same as above, so we
directly use the result of the above model, that is , in vertical movement defense mode, the reachable
area inside the goal is a rectangle 2l = 1.9m wide and H = 2.44m tall.

Diving save However, the diving save mode is different from the above one. The integral upper
limit xt changes because there is no time limit.

We can calculate xt with the following method.When y = 0, xt =
vxvy+vx

√
v2y+2gy0

g
, so we get :

S =
∫ xt

0

(
y0 + vy

x

vx
− 1

2
g
(
x

vx

)2
)
dx = y0xt +

1

2

vyx
2
t

vx
− 1

6
g
x3
t

v2x
(18)

We also write python codes to get the α that maximizes S. α = 0.92rad. And we can plot the
trajectory as follow.
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Figure 16: The trajectory of goalkeeper’s shoulders in dead angle situation

We can get time of movement ts =
xt

vx
= 0.972s.

Also, we draw the farthest points arms can reach, and interpolate them. After interpolation, we
can get the reachable area by diving save mode.

Figure 17: The area reached by diving save in dead angle situation

Considering the two defense methods, there are only two corners left inside the goal, which is the
absolute dead angle area.

Let’s have a look at the dead angle area:
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Figure 18: The dead angle area

It can be simplified as a triangle. The intersections of reachable area(or dead angle area) and the
goal can be calculated with the interpolated area function. Their coordinates are (±2.84, 2.44),(±3.66, 1.648).
And considering the radius of football, the actual dead angle area is a rectangle smaller than the
triangle above, but it is still large enough for the ball to pass through.

Again we assume the angular velocity as ω⃗ = 15k⃗(Unit : rad/s) and initial velocity as v0 =
25((Unit) : m/s). Using Python programs, we obtain an image of the reasonable direction angles.

Figure 19: The trajectory of soccer with reasonable initial direction angles

The ball can reach the upper corners if the shooting player kicks it in the range of orientation
angles shown in the image above. The specific value range of the direction angle can be obtained by
using the code in the appendix. The range of reasonable orientation angles are as follows. The range
of θ is [76.95◦, 78.95◦] and the range of ϕ is [75.5◦, 75.9◦] and [110.3◦, 110.6◦].
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4 Discussion

4.1 Advantages

• We consider the issue comprehensively.
When analysing the force on soccer, we take forces into account as much detail as possible.
And also, we analyse two defense modes of the goalkeeper.

• The universality of our model is strong.
With a random initial conditions(including direction and value of velocity and angular velocity),
we can calculate and obtain the trajectory of the soccer, and therefore determine whether the
ball can enter the target area.

• The solution is of high accuracy.
With suitable numerical analysis methods and Python programming, we obtain results of high
accuracy. For example, when calculating the reasonable direction range, we traverse enough
points to obtain the set of solution.

• Our assumptions and parameters are close to actual fact.
All of our parameters are not our subjective assumptions, but are obtained based on official or
recognized information.

• Our visualization is illustrative.
During the analysis, we draw a lot of schematic diagrams to help understand and result diagrams
to make the results more intuitionistic.

• Our model is innovative.
We use the Monte Carlo simulation method to study the the distribution of the success possi-
bility.

4.2 Disadvantages

• Less convincing data
Although we endeavor to find more data about soccer players for making a better theoretical
analysis, our data is still limited and cannot accurately measure the players, which may lead
to the inaccuracy of the initial velocity interval.

• Ignorance of some factors
To make our model easier to compute, we ignore some factors. For example, we neglect the
variation of air density and simplify defensive strategy of the goalkeeper. Also, perhaps in the
actual environment where the goal is located, the player does not have a good grasp of the
speed and direction of ball, and therefore can’t kick soccer to the target point.

5 Conclusion

After the analysis of the first question, we establish a model of the trajectory of the ball based
on aerodynamics. With random initial velocity and angular velocity, we can obtain the trajectory of
soccer. We find that the reasonable value of initial velocity should be more than v0min = 20.17m/s.

Given an angular velocity at ω⃗ = 15k⃗(Unit:rad/s), the range of θ is [76.7◦, 79.8◦] and the range of ϕ
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is [75.5◦, 84.5◦] and [100.0◦, 110.5◦]. While given an an angular velocity at ω⃗ = 6⃗i+6⃗j+6k⃗, the range
of θ is [75.29◦, 79◦] and the range of ϕ is [73.5◦, 84.0◦] and [98◦, 108.5.5◦]. We can also obtain the
range of direction angles when given any set of initial velocity values and angular velocities through
our codes.

When taking the defense of the goalkeeper into consideration, we consider two defense modes:
vertical movement defense and diving save. We gain the success probability distribution of defense
through Monte Carlo Simulation. We then consider the cases that the shooting player will definitely
make the goal by finding out the areas that the goalkeeper cannot reach, which is found as a rectangle.
Again we provide the angular velocity as ω⃗ = 15k⃗(Unit : rad/s) and initial velocity as v0 =
25((Unit) : m/s). In this case the range of θ is [76.95◦, 78.95◦]and the range of ϕ is [75.5◦, 75.9◦] and
[110.3◦, 110.6◦].

In all, if the shooting player follows the strategy provided by our task, he will have the best
chance of avoiding the goalkeeper and making the goal.
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Appendix

A Codes

Code1

1 # ca l c u l a t i n g the range o f theta and phi and the t r a j e c t o r y o f the b a l l
2 from mp l t o o l k i t s . mplot3d import Axes3D
3 import numpy as np
4 from sc ipy . i n t e g r a t e import ode int
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5 import matp lo t l i b . pyplot as p l t
6 from mp l t o o l k i t s . mplot3d import axes3d
7 from math import rad ians
8

9 m = 0.4
10 k = 0.2∗np . p i ∗1 .29∗0 .11∗∗2
11 g = 9 .8
12 wx = 0
13 wy = 0
14 wz = 15
15 r = 0.108
16 G = 8/3∗np . p i ∗1 .29∗0 .11∗∗3
17 v0 = 25
18 rho0 = 1.29
19

20

21 de f d i f f e q u a t i o n ( s o l l i s t , t ) :
22

23 x , xx , y , yy , z , zz = s o l l i s t
24 r e turn np . array ( [ xx ,
25 − k∗np . sq r t ( xx ∗∗ 2+yy ∗∗ 2+zz ∗∗ 2) ∗
26 xx+G∗( yy∗wz−zz ∗wy) ,
27 yy ,
28 − k∗np . sq r t ( xx ∗∗ 2+yy ∗∗ 2+zz ∗∗ 2) ∗
29 yy+G∗( zz ∗wx−xx∗wz) ,
30 zz ,
31 − k∗np . sq r t ( xx ∗∗ 2+yy ∗∗ 2+zz ∗∗2) ∗
32 zz+G∗( xx∗wy−yy∗wx)−m∗g+3/4∗np . p i ∗ r ∗∗3∗ rho0∗g ] )
33

34

35 ax = p l t . axes ( p r o j e c t i o n=’ 3d ’ )
36 ax . s e t x l a b e l ( ’X ’ )
37 ax . s e t y l a b e l ( ’Y ’ )
38 ax . s e t z l a b e l ( ’Z ’ )
39

40 vx = [ ]
41 vy = [ ]
42 vz = [ ]
43

44

45

46 de f the ta ph i sweep ( v0=25):
47 p = [ ]
48 pmin=[ ]
49 pmax=[ ]
50 i = 0
51 f o r theta in np . arange ( 76 . 6 , 79 . 9 , 0 . 1 ) :
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52 p . append (0 )
53 pp = [ ]
54 f o r phi in np . arange (70 , 8 5 , 0 . 5 ) :
55 vx0 = v0∗np . s i n ( rad ians ( theta ) )∗np . cos ( rad ians ( phi ) )
56 vy0 = v0∗np . s i n ( rad ians ( theta ) )∗np . s i n ( rad ians ( phi ) )
57 vz0 = v0∗np . cos ( rad ians ( theta ) )
58 t = np . l i n s p a c e (0 , 0 . 6 , num=100)
59 s o l 0 = [ 0 , vx0 , 0 , vy0 , r , vz0 ]
60 r e s u l t = ode int ( d i f f e qua t i o n , so l0 , t )
61 # pl t . p l o t ( t , r e s u l t [ : , 0 ] , l a b e l =’x ’ ) # x
62 # pl t . p l o t ( t , r e s u l t [ : , 2 ] , l a b e l =’y ’ ) # y
63

64 x = r e s u l t [ : , 0 ]
65 y = r e s u l t [ : , 2 ]
66 z = r e s u l t [ : , 4 ]
67 i f np . argwhere ( y > 11+r ) . s i z e >0:
68

69 id = np . argwhere (y > 11+r ) [ 0 ]
70 i f z [ id ] > 1.7346666666666668 and z [ id ] < 2 . 3 3 2 :
71 i f −3.552<x [ id ] < −1.328 or 1 .328 < x [ id ] < 3 . 5 5 2 :
72 ax . plot3D (x , y , z , c o l o r=’ l i g h t s t e e l b l u e ’ )
73 pp . append ( phi )
74 vx . append ( vx0 )
75 vy . append ( vy0 )
76 vz . append ( vz0 )
77 f o r phi in np . arange ( 9 1 , 1 1 5 , 0 . 5 ) :
78 vx0 = v0∗np . s i n ( rad ians ( theta ) )∗np . cos ( rad ians ( phi ) )
79 vy0 = v0∗np . s i n ( rad ians ( theta ) )∗np . s i n ( rad ians ( phi ) )
80 vz0 = v0∗np . cos ( rad ians ( theta ) )
81 t = np . l i n s p a c e (0 , 0 . 6 , num=100)
82 s o l 0 = [ 0 , vx0 , 0 , vy0 , r , vz0 ]
83 r e s u l t = ode int ( d i f f e qua t i o n , so l0 , t )
84

85 x = r e s u l t [ : , 0 ]
86 y = r e s u l t [ : , 2 ]
87 z = r e s u l t [ : , 4 ]
88 i f np . argwhere ( y > 11+r ) . s i z e >0:
89

90 id = np . argwhere (y > 11+r ) [ 0 ]
91 i f z [ id ] > 1.7346666666666668 and z [ id ] < 2 . 3 3 2 :
92 i f −3.552<x [ id ] < −1.328 or 1 .328 < x [ id ] < 3 . 5 5 2 :
93 ax . plot3D (x , y , z , c o l o r=’ l i g h t s t e e l b l u e ’ )
94 pp . append ( phi )
95 vx . append ( vx0 )
96 vy . append ( vy0 )
97 vz . append ( vz0 )
98
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99 # i f pp == [ ] :
100 # pr in t ( theta )
101 p [ i ] = pp
102 i f pp ! = [ ] :
103 pmin . append (pp [ 0 ] )
104 pmax . append (pp [ −1])
105 i+=1
106 r e turn [ p , pmin , pmax ]
107

108 pr in t ( ’ $\\ theta$ minimum : ’ , np . arange ( 7 6 . 6 , 79 . 9 , 0 . 1 ) [ 1 ] )
109 pr in t ( ’ $\\ theta$ maximum: ’ , np . arange ( 76 . 6 , 79 . 9 , 0 . 1 ) [ −2 ] )
110 pr in t ( ’ $\phi$ minimum : ’ ,min ( theta ph i sweep ( ) [ 1 ] ) )
111 pr in t ( ’ $\phi$ maximum: ’ ,max( theta ph i sweep ( ) [ 2 ] ) )
112 # draw r e c t ang l e
113 ax . p l o t ([−7.32/2+r ,−7.32/2+r ,−7.32/6− r ,−7.32/6− r ,−7.32/2+ r ] ,
114 [ 1 1 , 11 , 11 , 11 , 11 ] , [ 2 . 44∗2/3+ r ,2.44− r ,2.44− r ,2 .44∗2/3+ r ,2.44∗2/3+ r ] )
115 ax . p l o t ( [7 .32/2 − r ,7.32/2− r ,7 .32/6+ r ,7.32/6+ r ,7.32/2− r ] ,
116 [ 1 1 , 11 , 11 , 11 , 11 ] , [ 2 . 44∗2/3+ r ,2.44− r ,2.44− r ,2 .44∗2/3+ r ,2.44∗2/3+ r ] )
117 ax . p l o t ( [ −7 .32/2 , −7 .32/2 ,7 .32/2 ,7 .32/2 ] ,
118 [ 1 1 , 1 1 , 1 1 , 1 1 ] , [ 0 , 2 . 4 4 , 2 . 4 4 , 0 ] )
119 p l t . xl im (−4 ,4)
120 p l t . yl im (0 ,11 )
121

122 p l t . gca ( ) . s e t box a spe c t ( ( 8 , 11 , 2 . 5 ) )
123 p l t . show ( )

Code2

1 # ca l c u l a t i n g the minimun value o f v e l o c i t y
2 v0min=0
3 f o r v0 in np . arange ( 2 0 . 1 , 2 0 . 2 5 , 0 . 0 1 ) :
4 p= theta ph i sweep ( v0 ) [ 0 ]
5 f o r i in p :
6 i f i ! = [ ] :
7 v0min=v0
8 pr in t ( ’ v0min : ’ , v0 )
9 break

10 i f v0min !=0:
11 break

Code3

1 # D i s t r i b i t i o n
2 import pandas as pd
3 import matp lo t l i b . pyplot as p l t
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4 import numpy as np
5 import sympy as sp
6 from sc ipy . opt imize import fmin
7 from sc ipy . i n t e r p o l a t e import lagrange
8 import s c ipy . i n t e r p o l a t e as i n t e r p o l a t e
9 import matp lo t l i b . patches as mpathes

10

11 sa=0.4
12 a=34.33
13 g=9.8
14 hl =1.54375
15 t =0.181
16 r =0.108
17 arm=0.95#arm length
18

19 # %%
20 de f goa l (x , z ) :
21

22 i f −7.32/2+r<x<7.32/2− r and r<z<2.44− r :
23 r e turn True
24 e l s e :
25 r e turn Fal se
26

27 de f vmd(x , z ) : #v e r t i c a l movement de f en se
28 l =1.9/2
29

30 i f −l<x<l and z<2.44:
31 r e turn True
32 e l s e :
33 r e turn Fal se
34

35 de f d i v i ng save (x , z ) :
36

37 alpha=0.67324219
38 de f fun (x ) :
39 y0=hl
40 vx=a∗np . cos ( alpha )∗ t
41 vy=(a∗np . s i n ( alpha)−g )∗ t
42 y=y0+vy∗x/vx−1/2∗g ∗( x/vx )∗∗2
43 r e turn y
44

45 xx=np . l i n s p a c e ( −3 .66 ,3 .66 ,1000)
46

47 xs , ys = sp . symbols ( ’ x y ’ )
48 dfun=sp . d i f f ( fun ( xs ) , xs )
49

50 x array = np . l i n s p a c e ( 0 , 3 . 6 6 , 5 0 )
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51 y array =[ ]
52 f o r member in x ar ray :
53 y array . append ( fun (member ) )
54

55 temp = [ ]
56

57 f o r i in range ( 5 0 ) :
58 fun x = f l o a t ( dfun . e v a l f ( subs={xs : x ar ray [ i ] , ys : y ar ray [ i ] } ) )
59 temp . append ( fun x )
60

61 dfun array = np . array ( temp)
62 #tan ( theta )
63

64

65 rx =[ ]
66 ry =[ ]
67 f o r i in range ( 5 0 ) :
68 k=−1/dfun array [ i ]
69 i f k>0:
70 rx . append ( x ar ray [ i ]+1∗arm/np . sq r t ( k∗∗2+1))
71 ry . append ( y ar ray [ i ]+k∗arm/np . sq r t ( k∗∗2+1))
72 e l s e :
73 rx . append ( x ar ray [ i ]−1∗arm/np . sq r t ( k∗∗2+1))
74 ry . append ( y ar ray [ i ]−k∗arm/np . sq r t ( k∗∗2+1))
75

76 t r u e r x =[ ]
77 minus rx =[ ]
78 t r u e r y =[ ]
79 f o r i in range ( 5 0 ) :
80 i f rx [ i ]>0 or rx [ i ]==0:
81 t r u e r x . append ( rx [ i ] )
82 t r u e r y . append ( ry [ i ] )
83 minus rx . append(−rx [ i ] )
84

85

86

87 f f=i n t e r p o l a t e . s p l r ep ( t rue rx , t rue ry , s=0)
88

89 i f z<i n t e r p o l a t e . sp l ev ( abs (x ) , f f , der =0):
90 r e turn True
91 e l s e :
92 r e turn Fal se
93

94

95

96

97 # %%
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98 import random
99 import numpy as np

100 from sc ipy . s t a t s import norm
101 %matp lo t l i b i n l i n e
102 import matp lo t l i b . pyplot as p l t
103

104

105

106 de f s co r e (x , z ) :
107 g l oba l w
108 i f goa l (x , z ) :
109 w=1
110 i f vmd(x , z ) :
111 w+=1
112

113 i f d i v i ng save (x , z ) :
114 w+=1
115 w=w∗norm . pdf (x , l o c =0, s c a l e =7.32/2)∗norm . pdf ( z , l o c =1.22 , s c a l e =1.22)
116 r e turn w
117

118

119

120 # %%
121 c o l o r =[ ]
122 xx=[ ]
123 zz =[ ]
124

125

126 # %%
127 f o r i in range (20000 ) :
128 x=np . random . uniform ( −7.32/2 ,7 .32/2)
129 z=np . random . uniform (0 , 2 . 4 4 )
130 c o l o r . append ( s co r e (x , z ) )
131 xx . append (x )
132 zz . append ( z )
133

134 # %%
135

136

137 p l t . s c a t t e r ( xx , zz , c=co lo r , s=35)
138 p l t . t i t l e ( ’Monte Carlo S imulat ion ’ )
139

140 p l t . show ( )
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