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Analysis of Shooting Strategy in Penalty Kick

Summary
This paper establishes a physical model to perform a force analysis on the football in a

penalty kick and uses the Newton’s Second Law and Magnus Effect to introduce the
dynamic and kinematic differential equations. To obtain appropriate ball flight charac-
teristics including initial velocity and spin, we use Euler Method to perform a computer
numerical simulation of the state of movement in football. In problem 1, the variable
step search method is employed to obtain acceptable solutions which can result in the foot-
ball hitting the upper corner. In problem 2, we propose a Goalkeeper Save-ball Model
to pose an extra time limit to initial velocity and angular velocity of spin. To polish our
model, we take the rough surface of the football into account, which makes our model closer
to reality and improves the performance in accuracy.

Problem One requires the value of the initial velocity and spin of a football, which can
make the ball hit the upper corner. We establish differential equations to describe the motions
of the football, based on the force analysis process. Since there is no possibility of figuring
out an analytical solution, we choose the Euler Method to simulate the whole process.
With the movement control formula, we construct a univariate optimization model with the
initial value of speed, direction, and rotation angular velocity as the decision variables. When
the distance between the ball and the center of the upper corner is less than 0.05m, it is
regarded as a success. Applying our model to simulate, we find several strategies to achieve
the goal, with the best one being (initial speed, pitch angle, direction angle, spin
angular velocity) = (19, 1.2566, 1.2566, 14.9095). The distance is 0.0363m.

Problem Two takes the factor of the goalkeeper into account, which means there is a
time limit for a ball to hit the goal. It is assumed that the goalkeeper in our model is
completely rational to make the optimal decision for saving the ball. Therefore, only the ball
whose flight time is less than the reaction time of the goalkeeper has the opportunity to win.
In this model, we obtain three types of feasible strategies (1108 strategies in total), mainly
concentrated in the lower right corner (Only think about the right side; the left one is
symmetrical).

For optimization, we perform a correction to them by adding the air resistance moment
caused by the rough surface, which will make the angular velocity decrease rather than hold
a constant. Applying the modified model, we can obtain the best solution that makes the
ball hit the goal with only 0.0118m deviating from the center of the upper corner. The
initial conditions can be observed as (initial speed, pitch angle, direction angle, spin
angular velocity) = (17, 0.5236, 1.3963, 32.2593). Finally, we do a case study to
verify the plausibility and validity of the model.

Keywords: Magnus Effect, Penalty Kick, Variable Step Search Method, Differntial
Equation, Goalkeeper Save-ball Model, Model Correction
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1 Introduction

1.1 Problem Background

In the game of FIFA football or soccer, the penalty kick is awarded to the non-offending
team when one of soccer’s direct kick offenses occurs within the offending team’s penalty
area[3]. In the penalty kick session, the speed and the proper spin of the ball will determine
whether the outcome is successful or not. These factors are called flying characteristics.
These characteristics must be considered for a successful shot, which requires an accurate
decision about initial velocity and spin. To avoid the goalkeeper, the shooting player usually
employs a strategy like aiming an upper corner or a deceptive shot. Therefore, technical
strategies that enhance the probability of a successful shot are important for a soccer game.

1.2 Jargon

Upper Corner
The question calls for trying to get a ball to shoot in from the upper corner of the goal,

and we define the ”ten-point angle” of the goal, that is, the boundary of the ball enters just
tangent to the upper and side posts (Figure 1). We tried to generate a shooting scheme that
would make the ball enter the goal closest to the center of the ”ten point angle” without
hitting the goalpost.

Figure 1: The upper corner

1.3 Restatement of the Problem

This question requires us to establish physical models to find football flight characteristics
including initial velocity and spin to obtain a successful shot to an upper corner from the
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penalty mark. In addition, considering the goalkeeper’s movement, we need to employ time
constraints in our model to figure out feasible solutions. To explore the solution space, we
need to establish a model to estimate the force on the ball, describes its movement, and
determine the outcome with varying football flight characteristics in different step length.
Next, the goalkeeper model is introduced to find the best chance for the shooting player
to win the penalty kick. Finally, we need to do case studies to confirm the feasibility and
sensitivity of our model. Meanwhile, we will do a correction to our model to obtain a more
practical solution to this problem.

1.4 Our work

We establish a dynamics and kinematics model to describe the movement of a football
with a specific set of flying characteristics including speed, direction, and spin. In task 2, we
consider the movement of a goalkeeper, obtaining different shooting strategies at different
speeds. In both tasks, we employ the variable step length searches to acquire feasible solution
space. Moreover, to confirm the reasonability of our model, we conduct case studies according
to some known data eventually. The flow chart of our work is shown below in Figure. 2.

Figure 2: The flow chart of our work
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2 Basic Assumptions and Justifications

→ Assumption 1: Regardless of the influence of psychology and other factors, the goal-
keepers and penalty players strictly abide by the rules of the game, and there are no
other interferences.

→ Assumption 2: The shot actions and techniques used by the penalty players are not
considered for simplification.

→ Assumption 3: When the ball is kicked out, the goalkeeper stands in the middle
between the two goalposts.
Justification: Because the direction of the shot cannot be confirmed before the ball
is kicked out, and the prediction for the direction varies from players to players, it is
the most appropriate choice for the goalkeeper to stand in the middle.

→ Assumption 4: The surface of a football is smooth, without considering the effect
of viscous resistance on the rotation speed of the football.
Justification: It is considered that the time the ball moves in the air is relatively
short, thus it has little effect on the viscous drag.Besides, compared with the viscous
drag, the air drag has a more significant influence on the reduction of translational
speed. Subsequently we modified the model to consider this situation.

→ Assumption 5: The football only rotates around the z axis.
Justification: The penalty kick is close to the goal and there is no human wall, so
there is no restriction on the height of the highest point. It is not necessary to consider
the ”elevator ball” kick method with rapid fall in the z-axis direction. The focus of this
paper is the ”screw shot” with an arc.

→ Assumption 6: The situation where the football bounces off the goalpost and enters
the goal is not considered, and the interference of wind speed on the ball’s movement
is neglected.
Justification: The movement of the football after hitting the goalpost is related
to a series of factors such as the direction of the football’s movement, the direction
of rotation, the structure of the goalpost and the wind speed. It is regarded as a
probabilistic event. This article does not focus on this process.

→ Assumption 7: The goalkeeper is rational that he can correctly judge the shooting
direction and well prepared to fetch the ball when the ball is kicked out.
Justification: In penalty shootouts, goalkeepers generally take longer to save than
it takes for a football to score, so goalkeepers are at a disadvantage. To increase the
fairness of the problem, we give the goalkeeper a certain ”make-up”.

→ Assumption 8: Shot options that bring the ball to the ground are not considered,
extreme cases with extremely high ball speed are not considered
Justification: When the ball touches the ground, it will collide and rub against
the ground, slowing down the ball’s speed. Regardless of the challenge of secondary
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reactions caused by changes in the trajectory of the football, we believe that the tra-
jectory of a shot running entirely in the air is better than contact with the ground.
The powerful volley is extremely high on the strength and technical requirements of
the penalty player, which is generally difficult to meet, so it is not considered.

3 Notations

Table 1: Notations

Symbol Description
θ The velocity azimuth angle
θ0 The included angle between X-axis and X’-axis

and the plane projection direction of the velocity
θ′ The corrected velocity azimuth angle
Cd The air resistance constant
f The air resistance in the direction of translational velocity

Re The reynolds number
η The air viscosity coefficient
ω The angular velocity of football’s spinning
ω′ The corrected angular velocity of football’s spinning
vh The speed of the football in the vertical direction
vxy The soccer speed projected onto XOY plane
α The pitch angle between soccer speed and XOY plane
L The magnus force
h The goalkeeper height

hG The height of the goalkeeper’s center of gravity
h0 The height of the goalkeeper shoulder
ts The time for the goalkeeper to save

4 Model Establishment and Analysis

4.1 Task 1: Successful Shot on A Upper Corner

4.1.1 Coordinate System

We Establish the Coordinate System XYZ with the origin located in the penalty mark
to analyze the movements of the football. The X-axis is parallel to the long side of the goal,
and the right direction is the positive direction. The Y-axis is perpendicular to the long side
of the goal and points inside the goal.

Selecting a good coordinate system can greatly reduce the complexity of the problem.
To express the motions of the ball more conveniently and succinctly, an auxiliary coordinate
system X’Y’Z’ is introduced in our model. The X’-axis coincides with the direction of the
initial speed of the football, with the Y’-axis meeting the right-hand spiral rule.
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The diagram of the Coordinate System is shown as Figure 3. (Z and Z’axis can be found
from the right-hand spiral rule)

Figure 3: The establishment of the coordinate system

The included angle between X-axis and X’-axis is θ0. Considering that ds = rdθ, r =
ds
dθ = vxy

dt
dθ，and ω = ω0 hold valid under all circumstances, we can figure out the angle

between vxy and X-axis by equation1 below [6].

dθ

dt
=

G
m

θ =
∫ θ

θ0

dθ = θ0 +
∫ t

0

G
m

ωdt = θ0 +
G
m

ω0t

(1)

4.1.2 Force Analysis

To obtain the motion of the football in a penalty kick, we analyze the force on the ball
during the whole process. In our model, we take the effect of three forces into account,
including gravity, resistance, and Magnus’s force, which will be discussed in detail in the
following.

Gravity
The gravity acceleration is 9.8m/s2, whose direction is downward along the z-axis.
Air Resistance
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Due to the symmetry of the sphere, the air resistance f is in the opposite direction to the
velocity. The relationship between the air resistance f and the velocity of the sphere can be
obtained by simplifying the model. The disc as shown in the figure is the largest section of
the sphere and orthogonal to the velocity direction[6].

The pressure on both sides of the disc is different. State 1 is that the airflow has not
been passed through by the sphere, the pressure is p1, and the relative velocity is v1=v. The
airflow in state 2 is completely blocked by the disc, with pressure p2 and relative velocity v2
＝ 0. According to Bernoulli principle[4],

p1 +
1
2

ρv1
2 = p2 +

1
2

ρv2
2 (2)

According to Equation 2, it can be obtained that the pressure difference on both sides of the
section is,

p1 − p2 =
1
2

ρv2 (3)

Let the disk area be S, and the resistance of the disk is the pressure difference between
the two sides of the disk, which is described in equation 4:

f = (p1 − p2)S =
1
2

ρSv2 (4)

Equation 4 is a simplified resistance formula for sphere modeling. The actual sphere is
not a disk, causing the air will lose speed. Because when the air flows over the surface of the
ball, there will be friction. The rotation of the sphere affects the resistance of the sphere,
which leads to a more complex situation.

We introduce the air resistance constant Cd to normalize these effects. The literature
indicates that Cd is not only related to the ball material and surface structure, but also to
the ball’s flight speed and rotation speed. For a specific velocity, the Cd can be regarded as
a constant, with the air resistance expressed as:

f⃗ = −1
2

CdρSv2 v⃗
v

(5)

Where, S is the largest section of the ball, ρ is the density of the air, v is the velocity of
the ball.

If the air density is constant and the deformation of the sphere is not considered, the air
resistance is only proportional to the square of the speed, and the direction is always opposite
to the speed direction.

It is important to determine the air consistence constant Cd at a given speed, whose rela-
tionship is too complex to obtain by theoretical derivation. Asai et al. find the relationship
between Cd and Reynolds Number Re, which is described in picture 4. According to this
experimental graph and the formula of Reynolds Number:

Re = ρvD/η (6)
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Figure 4: The relationship between Cd and Re [5]

We can determine the value of Cd with air viscosity coefficient η = 18.2µPa · s , air
density ρ = 1.20kg/m3 , football diameter D = 0.22m through the curve (smooth sphere)
in picture 4. We use the interpolation method to process the data and obtain the relationship
curve between the velocity and the air resistance constant.

Table 2: Relationship between velocity and air resistance coefficient [8]

v(ms−1) Re(×104) Cd

0.0 0 0
2.5 3.63 0.5
5.0 7.25 0.5
7.5 10.9 0.5
10.0 14.5 0.5
12.5 18.1 0.5
15.0 21.8 0.5
17.5 25.4 0.5
20.0 29.0 0.45
22.5 32.6 0.4
25.0 36.3 0.2
27.5 39.9 0.1
30.0 43.5 0.06
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Figure 5: The relationship curve between the velocity and the air resistance constant

Magnus Force
The Magnus force generated by the rotation of the sphere comes from the pressure differ-

ence caused by the different flow velocities on all sides of the sphere. When a rotating sphere
flies in the air, the velocity of flow on the side facing the airflow in the direction of rotation
slows down, while the velocity on the side following the airflow speeds up, according to the
Bernoulli equation:

p1 +
1
2

ρv1
2 = p2 +

1
2

ρv2
2 = c (7)

v1 = v + ωR , v2 = v − ωR (8)

Figure 6: The Magnus Effect
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The pressure difference between the two sides produces a Magnus force perpendicular to
ω and v, the magnitude of which is:

L = S(p2 − p1)

=
1
2

πa2ρ(v1
2 − v2

2)

= 2πρa3vω

(9)

The sphere is not a disk, so the sphere volume formula and the Norkowski circulation
theory are used to modify it to obtain the final expression of Magnus force as Equation 10

L =
8
3

πρωa3v (10)

Where, a is the radius of the ball, ω is the rotating angular velocity, ρ is the density of
the air, v is the current speed of the ball.

To sum up, the force on football is:



Gravity = mg

f = 1
2Cdρsv2 = Cv2

L = 8
3 πρωa3v = Gωv

(11)

Where, C = 1
2Cdρs and G = 8

3 πρa3.

4.1.3 Dynamics and Kinematics Equations

Based on the force analysis of football, we describe the football movement. In the coor-
dinate system XYZ, the motion curve of the football is shown in the figure 7.
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Figure 7: The Motion of the football in XYZ Coordinate System

It is assumed that the ball rotates around the O-Z axis. Because the ball is smooth, the air
drag moment can be eliminated. According to the conservation law of moment of momentum,
it is considered that the ball always rotates along this axis. Therefore, the Magnus force is
always horizontal and perpendicular to the velocity, providing centripetal force.

Figure 8: The Magnus Force on the football [5]

According to Newton’s second law, the dynamic differential equations [7] of football are
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listed in three directions of XYZ:



m dvh
dt = −mg − Cv2sinα

m dvxy
dt = −Cv2cosα

m
v2

xy
r = Gωvxy

(12)

where the α,ω,vxy and vh are illuminated in Figure 9

Figure 9: The sketch of some notations

4.1.4 Single Objective Programming Model

We can calculate the distance from the upper corner target position when the football
reaches the goal through differential equations. It is convinced that the penalty shot success-
fully enters the upper corner area when the distance is small enough. Therefore, we build a
single objective planning model intending to minimize distance:
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[v̂0, θ̂, ω̂] = arg
v0,θ,ω

MIN d =
√
(x − x0)2 + (z − z0)2



Motion Limitation



Y ≤ 11
Z ≥ 0
12 ≤ v ≤ 30
0 ≤ θ0 ≤ 90
0 ≤ α ≤ 90
0 ≤ ω ≤ 90

Control Equation



m dvh
dt = −mg − Cv2sinα

m dvxy
dt = −Cv2cosα

m
v2

xy
r = Gωvxy

Initial Condition



x0 = 0
y0 = 0
ẋ = v0cosθ

ẏ = v0sinθ

ż = v0sinα

(13)

Where,

• vh is the vertical velocity;

• θ0 is the plane projection direction of the velocity;

• α is the pitch angle;

• ω is the rotating angle velocity;

• vxy is the velocity on X-O-Y plane;

The analytical solution cannot be obtained for the above differential equations. Therefore,
we use the improved Euler method and computer simulation to solve the differential equation
to obtain the motion of the football. When the Euler method is used for numerical solution,
equation 12 is written in the recursive form:
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

v(k+1)
h − v(k)h = −mg+Cv(k)

2
sinα

m∆t

v(k+1)
xy − v(k)xy = −Cv(k)

2
cosα

m∆t

θ(k+1) = θ0 +
G
m ω0k∆t

v(k+1)
x = v(k+1)

xy cosθ(k+1)

v(k+1)
y = v(k+1)

xy sinθ(k+1)

∆h =
v(k+1)

h +v(k)h
2 ∆t

∆y =
v(k+1)

y +v(k)y
2 ∆t

∆x = v(k+1)
x +v(k)x

2 ∆t

(14)

4.2 Task 2: Best Chance Of Avoiding Goalkeeper and Making the
Goal

4.2.1 Goalkeeper Save-ball Model

Considering that the average height of professional goalkeepers in the European Five
Football Leagues is 188cm-191cm [2], we selected a goalkeeper with a height of 190cm as
a representative to study the save performance in penalty kicks. With the navel as the
boundary, the ratio of the upper body to the lower body is the golden ratio, so the height of
the goalkeeper’s center of gravity (the position of the navel) is:

hG =
1

1 + 0.618
h ≈ 117.43cm (15)

where, h is the heigth of the goalkeeper.
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Figure 10: The body scale diagram [1]

According to the human scale diagram (Pic 10), the height from the chin to the shoulder
is about 1

3head, and the head height is about 1
8of height. The average shoulder width of adult

males is 40cm.[1] Consider that the goalkeeper’s range of motion is a circle with the shoulder
as the diameter, and the center height and radius of the range of motion are:

h0 =
8 − 1 − 1

3
8

h =
5
6

h ≈ 159.33cm

R0 =
h − 40

2
+ h0 ≈ 233.33cm

(16)

where, h0 is the height of goalkeeper’s shoulder measured from the ground.
It is believed that the goalkeeper’s rescue method is fish-jump and that the goalkeeper

jumps out at a certain speed and stretch his body to fetch the ball. We define the goalkeeper’s
control area as a semicircle with the origin as the center. The length covered by the motion of
the goalkeeper is the radius R, and the dead corner area is the goal area that the goalkeeper
cannot cover, described in Figure 11. During the whole process, the area under control will
gradually increase, and the area of the dead corner will shrink. Therefore, if you shoot the
football into the goalkeeper’s dead corner within a certain time constraint, you can avoid the
goalkeeper and create the best opportunity to complete the goal. Because goalkeepers have
the process of landing, the control area is not a strict semicircle area.
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Figure 11: The diagram of the goalkeeper saving model

The time it takes for the goalkeeper to reach a position (x, z) should consist of two parts:
the time to lower the center of gravity and the time to pounce. Consider dividing the save
scenario into two: the height z of the football is higher than the goalkeeper’s center of gravity
and the height of the football is z below the goalkeeper’s center of gravity, the former scenario
does not reduce the center of gravity time. When calculating the time to lower the center of
gravity, we think that the human body falls freely with gravitational acceleration, getting the
time for the goalkeeper to lower the center of gravity to the height of the football (Equation
17).

t1 =

√
2(hG − z)

g
(17)

Since the goalkeeper pounces in a very short time, we consider this to be a constant
process. Calculating the maximum speed generated by human jumping is based on the
height of human jumping. It is generally believed that the bounce height of ordinary people
is 30cm-40cm. Considering the particularity of professional goalkeepers, it is believed that
the bounce height of goalkeepers is 50cm. Based on the study of the free fall process after
the jump, we calculate the muzzle velocity of the bounce as the maximum speed generated
by the jump(Equation 18).

vs =
√

2 × 0.5g = 3.13m/s (18)
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
z < hG ts =

√
2(hG−z)

g + x−R0
vs

z ≥ hG ts =
x2+z2−R0

vs

(19)

From the Save-ball Time Formula, we find that because there is no need to contact the
ground, the goalkeeper takes less time to complete a save above the center of gravity than
the center of gravity of the body, so at the same distance as the goalkeeper, the difficulty of
”sticking to the earth” is higher than that of the high-altitude ball.

4.2.2 Feasible Solution Space

Task 2 mainly considers the goalkeeper’s save model, and a successful penalty kick needs
to be shot into the goalkeeper’s defensive dead corner. We use the goalkeeper’s save time
as a constraint, and compare it with the shot time of the ball. If it is less than the ball’s
movement time, it is considered that the goal is successful, that is, the penalty shot failed.
The movement of the ball in the air is the same as that in Task 1, so the following search
targets and their constraints are listed below.

We define the following physical quantities,

• tsimulation is the time usage of the ball to reach the goal;

• ts is the time usage of the goalkeeper to rescue;

• vh is the vertical velocity;

• θ0 is the direction of the velocity;

• α is the pitch angle;

• ω is the rotating angular velocity;

• vxy is the velocity on X-O-Y plane;

• x2 + z2 − R0 is the distance between the ball and goalkeeper when the ball reaches the
goal;

• hG is the height of the goalkeeper’s Mass Center;

• h is the height of the goalkeeper.



Team # 471 Page 19 of 44

Find Feasible Solution : tsimulation ≤ ts



Motion Limitation



Y ≤ 11

Z ≥ 0

12 ≤ v ≤ 30

0 ≤ θ0 ≤ 90

0 ≤ α ≤ 90

0 ≤ ω ≤ 90

Control Equation



m dvh
dt = −mg − Cv2sinα

m dvxy
dt = −Cv2cosα

m
v2

xy
r = Gωvxy

Initial Condition



x0 = 0
y0 = 0
ẋ = v0cosθ

ẏ = v0sinθ

ż = v0sinα

GoalKeeper Constrain



h0 =
8−1− 1

3
8 h = 5

6 h

R0 = h−40
2 + h0

hG = 1
1+0.618 h

z < hG ts =
√

2(hG−z)
g + x−R0

vs

z ≥ hG ts =
x2+z2−R0

vs

(20)
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The analytical solution cannot be obtained for the above differential equations. Therefore,
we use the improved Euler method and computer simulation to solve the differential equation
to obtain the motion of the football. The formula can be expressed as:



Differential Equation



v(k+1)
h − v(k)h = −mg+Cv(k)

2
sinα

m∆t

v(k+1)
xy − v(k)xy = −Cv(k)

2
cosα

m∆t

θ(k+1) = θ0 +
G
m ω0k∆t

v(k+1)
x = v(k+1)

xy cosθ(k+1)

v(k+1)
y = v(k+1)

xy sinθ(k+1)

∆h =
v(k+1)

h +v(k)h
2 ∆t

∆y =
v(k+1)

y +v(k)y
2 ∆t

∆x = v(k+1)
x +v(k)x

2 ∆t

Goalkeeper Constrain



h0 =
8−1− 1

3
8 h = 5

6 h

R0 = h−40
2 + h0

hG = 1
1+0.618 h

z < hG ts =
√

2(hG−z)
g + x−R0

vs

z ≥ hG ts =
x2+z2−R0

vs

(21)

5 Model Solving

In the Model Solving part, we use the Euler method to simulate the football movement
process and adopt the variable step search method to determine the flight characteristics
that can hit the upper corner. Because the sitting of the goal and the upper right corner is
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completely symmetrical, we only consider the case where the direction angle of the football
exit is 0-90 degrees in the solution process.

We carried out four searches with different step lengths to determine the value of the
initial velocity, the direction angle of the initial velocity, and the angular velocity of the
rotation of the football, to make the ball shot to a small neighborhood of the upper corner.

We draw the heat scatter plot of the distance from the upper corner under the parameter
settings of successfully entering the goal.

5.1 Task 1

First Round Search
The range and step of the first round search is described in table below, which has the

largest coarse grain size in our solving process.

Table 3: The Interval and Step of the first round search

Variable Name Interval Step
v [12.5,30] 0.5
α [0,π/2] π/2
θ [0,π/2] π/2
ω [0,20π] π/4

Figure 12: The scatter plot of the distance
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We can find that the distance between the goal point and the upper corner shows the
characteristics of being near at both sides and far in the middle, with the change of the
rotation angular velocity.

Table 4: The best solution in the first round search

distance/m v0/ms−1 α/rad θ0/rad ω/s−1

0.044740447 19 1.256637061 1.256637061 14.9225651

Second Round
The range and step of the second round search is described in table below:

Table 5: The Interval and Step of the second round search

Variable Name Interval Step
v [18.98,19.02] 0.01
α [8π/5,9π/5] π/180
θ [π/3,8π/5] π/36
ω [14.9125651,14.9325651] 0.001

Figure 13: The scatter plot of the distance

In this search window, it is obvious that only a few parameter combinations can success-
fully hit the goal. The best set is shown in Table 6.
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Table 6: The best solution in the second round search
distance/m v0/ms−1 α/rad θ0/rad ω/s−1

0.045363838 18.91 1.256637061 1.291543646 14.13716694

Third Round
The range and step of the third round search is described in table below:

Table 7: The Interval and Step of the third round search

Variable Name Interval Step
v [18.9,19.1] 0.01
α [2π/5,3π/5] π/180
θ [π/5,2π/5] π/180
ω [9π/2,5π] π/2

Figure 14: The scatter plot of the distance

According to the result, it can be observed that the value of α in this scale affects the
performance mainly. The distance is relatively small when the α is about 1.2566 rad.

Some best sets are shown in Table 8.
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Table 8: The best solution in the third round search
distance/m v0/ms−1 α θ0 ω/s−1

0.043092052 19 1.256637061 1.256637061 14.9175651
0.043503297 19 1.256637061 1.256637061 14.9165651
0.043914777 19 1.256637061 1.256637061 14.9155651
0.044048342 19 1.256637061 1.256637061 14.9245651
0.044326485 19 1.256637061 1.256637061 14.9145651
0.044393727 19 1.256637061 1.256637061 14.9235651
0.044738417 19 1.256637061 1.256637061 14.9135651
0.044740454 19 1.256637061 1.256637061 14.9225651

Fourth Round
The range and step of the fourth round search is described in table below:

Table 9: The Interval and Step of the fourth round search

Variable Name Interval Step
v 19 /
α 8π/5 /
θ 8π/5 /
ω [14.9075651,14.9175651] 0.001

Figure 15: The scatter plot of the distance



Team # 471 Page 25 of 44

It is shown that the best parameter set converges. The successful result can be seen in
Table 10

Table 10: The best solution in the fourth round search
distance/m v0/ms−1 α θ0 ω/s−1

0.036687513 19 1.256637061 1.256637061 14.9075651
0.036475906 19 1.256637061 1.256637061 14.9085651
0.036343719 19 1.256637061 1.256637061 14.9095651
0.03669686 19 1.256637061 1.256637061 14.9105651
0.036796681 19 1.256637061 1.256637061 14.9115651
0.036975588 19 1.256637061 1.256637061 14.9125651
0.037901874 19 1.256637061 1.256637061 14.9135651
0.038297921 19 1.256637061 1.256637061 14.9145651
0.03876568 19 1.256637061 1.256637061 14.9155651
0.040196381 19 1.256637061 1.256637061 14.9165651
0.040850887 19 1.256637061 1.256637061 14.9175651

Conclusion: We define when the distance between the upper corner and the ball is less
than 0.05m, it is regared as a successful shot to the upper corner. The solution satisfying the
condition is not unique. We make a diagram of successful shooting trajectories as Figure 16
and the shooting points are shown in Figure 17

Figure 16: Some successful shooting trajectories
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Figure 17: Successful shooting points of the football with different initial condition

5.2 Task 2

Based on works in task 1, we choose a search strategy described in Table 11.

Table 11: The search strategy in Task 2

Variable Name Interval Step
v [12,30] 0.01
α [0,π/2] π/10
θ [0,π/2] π/10
ω [0,20π] π/2

Considering the symmetry, we explore the situation of the right-hand side. Based on the
search, we discover 3 types of shooting strategies, including aiming at the bottom right-hand
corner, right upper corner, and left upper corner, which can be observed in Figure 18 and
Figure 19.
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Figure 18: successful shooting trajectories

Figure 19: Successful shooting points of the football with different initial condition

To make our experiment results more clear, we present parts of successful cases in Table
12 (1108 cases in total). Where ts is the time of a goalkeeper saving the ball, and the t is the
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flight time of a ball before entering the goal.

5.3 Rationality Analysis

• For Task 1, the point is to hit the upper corner, with the time usage considered sec-
ondary. In the result diagram and table, it can be witnessed that the initial speed is
relatively small. Our solution is reasonable because the task doesn’t highly take into
account the shooting time.

• For Task 2, a Goalkeeper Model is introduced to the penalty kick. Therefore, it is
important to shorten the flight time of the ball to avoid the goalkeeper, gaining a good
chance to score. The solution of Task 2 is distributed in the lower right corner of the
goal, which proved to be an ideal shooting area when it has a strict time limit.

Table 12: The search strategy in Task 2
ts/s t/s v0/ms−1 α θ0 ω/s−1

0.535799153 0.399 30 0.157079633 1.099557429 25.13274123
0.555457049 0.412 29.5 0.157079633 0.942477796 47.90928797
0.538908098 0.404 30 0.157079633 0.942477796 48.69468613
0.558546492 0.553 24 0.314159265 1.256637061 1.570796327
0.576154624 0.557 24 0.314159265 1.099557429 18.84955592
0.57925752 0.565 24 0.314159265 0.942477796 36.12831552
0.580397532 0.554 24 0.314159265 1.256637061 0.785398163
0.583574984 0.565 24 0.314159265 1.570796327 34.55751919
0.586810282 0.579 24 0.314159265 1.413716694 51.05088062
0.598444539 0.58 24 0.314159265 0.785398163 51.83627878

6 Sensitivity Analysis

In this problem, we need to consider the initial velocity and angel velocity of spin to make
the ball hit a best area or avoid the goalkeeper. Therefore, it is meaningful to analyze the
effects in result when pose a subtle change to these parameters. We change these parameters
in a specific range, and the variations of the result are illuminated in Figure 20

From these graphs, it can be observed that all of these parameters have a large effect on
the result, which implies that the step of searching needs be small enough to find feasible
solutions. We use the variable step search method, which allows us to adjust the search
precision, avoiding missing the solution space.
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(a) v0 (b) θ0

(c) α (d) ω

Figure 20: Results vary with different parameters

7 Model Correction

7.1 Viscous Force Modified

First, consider the influence of viscous resistance on the rotation speed of football. Ac-
cording to Stokes formula, the viscous resistance is calculated as:

F = −6πηωa2 (22)

As a hollow sphere, the moment of inertia of a football is I = 2
3 ma2. According to the

angular momentum theorem, Iω̇ = τ = Fa, substitute the moment of inertia, and get the
angular velocity change corrected as
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2
3

ma2 dω

dt
= −6πηωa3

∫ ω

ω0

1
ω

dω = −
∫ t

0

9πηa
m

dt

ω′ = ω0e−
9πηa

m t

(23)

According to Equation 1,azimuth θ can be modified as:

θ = θ0 +
∫ t

0

G
m

ωdt = θ0 +
G
m

∫ t

0
ω0e−

9πηa
m tdt

θ′ =
Gω0

9πηa
(1 − e−

9πηa
m t)

(24)

7.2 Modified Result

Based on Equation 23 and Equation 24, we correct the solution result of problem 1. We
first simulate part of the shooting scheme in the result of problem 1 to obtain the figure
below.

Figure 21: Simulation result with the modified model
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We found that after introducing the correction of rotational angular velocity, the angular
velocity is no longer constant, but decreases with time, eventually approaching 0. There-
fore, the azimuth theta is no longer a linear increase with time, but increases more slowly.
Therefore, in the corrected model, it is possible to choose the far angle of the shot, with a
large arc. The rotation speed is fast at the beginning with the angle changing quickly. With
the rotation speed slowing down, the angle change slows down, which leads to a successful
shooting. We search near the optimal result of solving problem 1 using the modified model
and get a new optimal shot selection:

Table 13: The initial condition in modified search
v0/ms−1 α θ0 ω/s−1

17 0.523598776 1.396263402 32.2593247

This is more realistic and closer to the center of the ”upper corner”, with the distance
being only 1.18cm. The best result is shown in Figure 22.

Figure 22: The best result of the modified model

8 Model Evaluation

8.1 Strengths

* In this paper, the air resistance constant is introduced to normalize the complex factors
that affect the air resistance, greatly simplifying the model and reducing the difficulty
of solving the model.
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* We establish a force analysis model of football, and the differential equation of its
motion state is listed. The improved Euler method is employed for numerical solutions,
and the computer simulation of the target motion state is intuitive and understandable.

* We use the variable length search method to search the optimal strategy step by step.
When approaching the optimal parameters, the step size is reduced, which is accurate
and efficient;

* Model analysis was conducted to explore the impact of hypothesis simplification on
the model. Based on this, the model is modified, and the modeling process is more
complete and reliable.

8.2 Weaknesses

* Due to the time discreteness of computer simulation, the simulation effect is not stable
enough, and the robustness of the model needs to be further improved.

* Cd is not only related to the material and surface structure of the sphere, but also the
flight speed and rotation speed of the sphere. It cannot be completely regarded as a
constant. Therefore, there will be some errors in the model.

* We think football is a sphere with a smooth surface, but it is not. The rough surface
will affect the rotation speed of the football, and ultimately affect the change of Magnus
force

9 Conclusion

In conclusion, the physical theory behind the penalty kick is complicated due to various
factors in a FIFA competition. Therefore, we establish a model to describe the motion of
the football and the goalkeeper to obtain a successful shooting strategy. To dig deeper into
this question, we start with a simplified model to determine the value of initial velocity and
the angular velocity of spin for a penalty kick. In Task 2, a goalkeeper model is introduced
to pose time limits on the movements of the football, which means higher speed may have
more chance to hit the goal. To make our models more practical and convincing, we have a
correction on our original model. Considering the rough surface of a soccer ball, it is closer
to reality and has optimized the result. In addition, we did a sensitivity analysis and a case
study to prove that our model is meaningful and reasonable.

We use the Euler Method to simulate the motion of the football using the computer,
based on differential equations in our model. To obtain feasible solutions for the problem, a
variable-step search method is employed. We found appropriate initial conditions to make a
successful kick.

We modified our models by considering air resistance caused by a rough surface, which
makes our model more practical and accurate. In addition, we applied our model to analyze a
real case, proving that our model has relatively good performance and practicability. Through
our models, the football player can score scientifically in penalty kicks.
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10 Case Study

Lionel Messi, a top football star at the level of
world, has not performed well in penalties.
According to statistics, Messi has been given 133
penalties in all kinds of competitions so far in his
career, including 103 scored and 30 missed
penalties, with a shooting rate of only about 77%.
Even some key penalties were missed in the
Champions League or important national team
matches. We took the 12 penalties Messi missed
during his club period from 2008 to 2015 for
analysis, as shown in the left. We found that of the
12 penalties conceded, four missed or hit the post,
while the other eight were saved by the goalkeeper.
The positions where these eight penalty kicks were
saved, show that all of them were close to the
middle, not entering the dead angle area solved in

our article, resulting in being saved by the goalkeeper. Messi's penalty kick has the habit of small
velocity, and likes to deceive the goalkeeper. After building the goalkeeper model in our article, it is
believed that the key factor in penalty kick is to achieve a fast ball speed, which may be an
important reason why Messi often misses penalties. According to The Economist's published
study—Lucky Twelve Yards, the results of different shot directions in penalty kick tiebreakers from
1976 to 2016 show that there is a clear dividing line between goals scored and saved at roughly the
same speed, which also proves the reality of the dividing line between the control zone and the dead
angle area. Finally, both our research results and the case studies of professional football players
show that increasing the ball speed in penalty kicks is the best shooting option, and there are also
certain requirements for the area where the goal is scored.
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Appendix

question1.m

clc, clear all;
g = 9.8;
m = 0.44;
r = 0.11;
rho = 1.29;
G = 8/3 * pi * rho * r^3;
v = [0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0,

17.5, 20.0, 22.5, 25.0, 27.5, 30.0];
Cd = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,

0.5, 0.45, 0.4, 0.2, 0.1, 0.06];
v1 = 0:0.01:30;
Cd1 = interp1(v, Cd, v1, 'pchip');

%% find ans
dist_rec = [];
para = [];

parfor v0 = 19

for alpha = 1.256637061

for theta0 = 1.256637061

for w = 14.9095651 - 0.001:0.0001:14.9095651 + 0.001
idx = find(v1 == v0);
Cd2 = Cd1(idx);
C = 0.5 * Cd2 * rho * pi * r^2;
dt = 0.0001;
vh = [];
vxy = [];
vx = [];
vy = [];
x = [0];
y = [0];
z = [0];
k = 0;
theta = theta0 + G / m * w * dt * k;
vh0 = v0 * sin(alpha);
vxy0 = v0 * cos(alpha);
vx0 = vxy0 * cos(theta);
vy0 = vxy0 * sin(theta);
dvh = (-m * g - C * v0^2 * sin(alpha)) * dt / m;
dvxy = (-C * v0^2 * cos(alpha)) * dt / m;
vh1 = vh0 + dvh;
vxy1 = vxy0 + dvxy;
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vx1 = vxy1 * cos(theta);
vy1 = vxy1 * sin(theta);
y1 = y(end) + (vy0 + vy1) * dt / 2;
x1 = x(end) + (vx0 + vx1) * dt / 2;
z1 = z(end) + (vh0 + vh1) * dt / 2;
vx = [vx, vx0, vx1];
vy = [vy, vy0, vy1];
vh = [vh, vh0, vh1];
x = [x, x1];
y = [y, y1];
z = [z, z1];
vh = [vh, vh0, vh1];
vxy = [vxy, vxy0, vxy1];

while y1 < 11 & z >= 0
k = k + 1;
theta = theta0 + G / m * w * dt * k;
v = sqrt(vh(end)^2 + vxy(end)^2);
dvh = (-m * g - C * v^2 * sin(alpha)) * dt / m;
dvxy = (-C * v^2 * cos(alpha)) * dt / m;
vh1 = vh(end) + dvh;
vxy1 = vxy(end) + dvxy;
vh = [vh, vh1];
vxy = [vxy, vxy1];
vx1 = vxy(end) * cos(theta);
vy1 = vxy(end) * sin(theta);
y1 = y(end) + (vy(end - 1) + vy(end)) * dt / 2;
x1 = x(end) + (vx(end - 1) + vx(end)) * dt / 2;
z1 = z(end) + (vh(end) + vh(end - 1)) * dt / 2;
vx = [vx, vx1];
vy = [vy, vy1];
vh = [vh, vh1];
x = [x, x1];
y = [y, y1];
z = [z, z1];

end

if (0 < x(end)) && (x(end) < 3.55) &&
(0 < z(end)) && (z(end) < 2.33)
dist = sqrt((x(end) - 3.55)^2 + (z(end) - 2.33)^2);
dist_rec = [dist_rec; dist];
para = [para; v0, alpha, theta0, w];

elseif (x(end) <= 0) && (x(end) >- 3.55) &&
(0 < z(end)) && (z(end) < 2.33)
dist = sqrt((x(end) + 3.55)^2 + (z(end) - 2.33)^2);
dist_rec = [dist_rec; dist];
para = [para; v0, alpha, theta0, w];

end

end
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end

alpha
end

v0
end

question2.m

clc, clear all;
g = 9.8;
m = 0.44;
r = 0.11;
rho = 1.29;
G = 8/3 * pi * rho * r^3;
v = [0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0,

17.5, 20.0, 22.5, 25.0, 27.5, 30.0];
Cd = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,

0.5, 0.45, 0.4, 0.2, 0.1, 0.06];
v1 = 0:0.01:30;
Cd1 = interp1(v, Cd, v1, 'pchip');
hG = 1.1743;

%% find ans
dist_rec = [];
para = [];
time = [];

for v0 = 12:0.01:30

for alpha = 0:pi / 10:pi / 2

for theta0 = 0:pi / 10:pi / 2

for w = 0:pi / 2:10 * 2 * pi
idx = find(v1 == v0);
Cd2 = Cd1(idx);
C = 0.5 * Cd2 * rho * pi * r^2;
dt = 0.001;
vh = [];
vxy = [];
vx = [];
vy = [];
x = [0];
y = [0];
z = [0];
k = 0;
theta = theta0 + G / m * w * dt * k;
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vh0 = v0 * sin(alpha);
vxy0 = v0 * cos(alpha);
vx0 = vxy0 * cos(theta);
vy0 = vxy0 * sin(theta);
dvh = (-m * g - C * v0^2 * sin(alpha)) * dt / m;
dvxy = (-C * v0^2 * cos(alpha)) * dt / m;
vh1 = vh0 + dvh;
vxy1 = vxy0 + dvxy;
vx1 = vxy1 * cos(theta);
vy1 = vxy1 * sin(theta);
y1 = y(end) + (vy0 + vy1) * dt / 2;
x1 = x(end) + (vx0 + vx1) * dt / 2;
z1 = z(end) + (vh0 + vh1) * dt / 2;
vx = [vx, vx0, vx1];
vy = [vy, vy0, vy1];
vh = [vh, vh0, vh1];
x = [x, x1];
y = [y, y1];
z = [z, z1];
vh = [vh, vh0, vh1];
vxy = [vxy, vxy0, vxy1];

while y1 < 11 & z >= 0
k = k + 1;
theta = theta0 + G / m * w * dt * k;
v = sqrt(vh(end)^2 + vxy(end)^2);
dvh = (-m * g - C * v^2 * sin(alpha)) * dt / m;
dvxy = (-C * v^2 * cos(alpha)) * dt / m;
vh1 = vh(end) + dvh;
vxy1 = vxy(end) + dvxy;
vh = [vh, vh1];
vxy = [vxy, vxy1];
vx1 = vxy(end) * cos(theta);
vy1 = vxy(end) * sin(theta);
y1 = y(end) + (vy(end - 1) + vy(end)) * dt / 2;
x1 = x(end) + (vx(end - 1) + vx(end)) * dt / 2;
z1 = z(end) + (vh(end) + vh(end - 1)) * dt / 2;
vx = [vx, vx1];
vy = [vy, vy1];
vh = [vh, vh1];
x = [x, x1];
y = [y, y1];
z = [z, z1];

end

t = dt * k;

if (-3.55 < x(end)) && (x(end) < 3.55)
&& (hG <= z(end)) && (z(end) < 2.33)

dist = sqrt((x(end))^2 + (z(end))^2);
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time_Goalkeeper = (dist - 2.3333) / 3.13;

if time_Goalkeeper > t
dist_rec = [dist_rec; dist];
time = [time; time_Goalkeeper , t];
para = [para; v0, alpha, theta0, w];

end

end

if (-3.55 < x(end)) && (x(end) < 3.55)
&& (0 <= z(end)) && (z(end) < hG)

dist = sqrt((x(end))^2 + (z(end))^2);
time_Goalkeeper = sqrt(2 * (hG - z(end)) / g) +
(x(end) - 2.3333) / 3.13;

if time_Goalkeeper > t
dist_rec = [dist_rec; dist];
time = [time; time_Goalkeeper , t];
para = [para; v0, alpha, theta0, w];

end

end

end

end

alpha
end

v0
end

scatter_plot.m

clc, clear, close all;
result = xlsread('result.xlsx', 1);
sortrows(result, 5);
w = result(:, 5);

y = result(:, 1);
v = result(:, 2);
alpha = result(:, 3);
theta0 = result(:, 4);
figure();
scatter3(w, alpha, theta0, v, y * 10, 'filled');
xlabel('w', 'color', 'k', 'fontsize', 18);
ylabel('\alpha', 'color', 'k', 'fontsize', 18);
zlabel('\theta_0', 'color', 'k', 'fontsize', 18);
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colorbar;

plot1.m

clc, clear all, close all;
g = 9.8;
m = 0.44;
r = 0.11;
rho = 1.29;
G = 8/3 * pi * rho * r^3;
v = [0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0,

17.5, 20.0, 22.5, 25.0, 27.5, 30.0];
Cd = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,

0.5, 0.45, 0.4, 0.2, 0.1, 0.06];
v1 = 0:0.01:30;
Cd1 = interp1(v, Cd, v1, 'pchip');
figure();
hold on
axis equal
plot3([-3.66, -3.66], [11, 11], [0, 2.44],
'k', [3.66, 3.66], [11, 11], [0, 2.44],
'k', [-3.66, 3.66], [11, 11], [2.44, 2.44],
'k', 'DisplayName', 'goalpost', 'linewidth', 2);
data = xlsread('result_correction.xlsx');
v0_data = data(1:50, 2);
alpha_data = data(1:50, 3);
theta0_data = data(1:50, 4);
w_data = data(1:50, 5);

for iter = 1:50
v0 = v0_data(iter);
alpha = alpha_data(iter);
theta0 = theta0_data(iter);
w = w_data(iter);
idx = find(v1 == v0);
Cd2 = Cd1(idx);
C = 0.5 * Cd2 * rho * pi * r^2;
dt = 0.001;
vh = [];
vxy = [];
vx = [];
vy = [];
x = [0];
y = [0];
z = [0];
k = 0;
theta = theta0 + G / m * w * dt * k;
vh0 = v0 * sin(alpha);
vxy0 = v0 * cos(alpha);
vx0 = vxy0 * cos(theta);
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vy0 = vxy0 * sin(theta);
dvh = (-m * g - C * v0^2 * sin(alpha)) * dt / m;
dvxy = (-C * v0^2 * cos(alpha)) * dt / m;
vh1 = vh0 + dvh;
vxy1 = vxy0 + dvxy;
vx1 = vxy1 * cos(theta);
vy1 = vxy1 * sin(theta);
y1 = y(end) + (vy0 + vy1) * dt / 2;
x1 = x(end) + (vx0 + vx1) * dt / 2;
z1 = z(end) + (vh0 + vh1) * dt / 2;
vx = [vx, vx0, vx1];
vy = [vy, vy0, vy1];
vh = [vh, vh0, vh1];
x = [x, x1];
y = [y, y1];
z = [z, z1];
vh = [vh, vh0, vh1];
vxy = [vxy, vxy0, vxy1];

while y1 < 11 & z >= 0
k = k + 1;
theta = theta0 + G / m * w * dt * k;
v = sqrt(vh(end)^2 + vxy(end)^2);
dvh = (-m * g - C * v^2 * sin(alpha)) * dt / m;
dvxy = (-C * v^2 * cos(alpha)) * dt / m;
vh1 = vh(end) + dvh;
vxy1 = vxy(end) + dvxy;
vh = [vh, vh1];
vxy = [vxy, vxy1];
vx1 = vxy(end) * cos(theta);
vy1 = vxy(end) * sin(theta);
y1 = y(end) + (vy(end - 1) + vy(end)) * dt / 2;
x1 = x(end) + (vx(end - 1) + vx(end)) * dt / 2;
z1 = z(end) + (vh(end) + vh(end - 1)) * dt / 2;
vx = [vx, vx1];
vy = [vy, vy1];
vh = [vh, vh1];
x = [x, x1];
y = [y, y1];
z = [z, z1];

end

plot3(x, y, z, 'Color',
[iter / 50/16, 1 - iter / 50/2, 1 - iter / 50/7]);
% plot3(x,y,z,'r','linewidth ',1.5);
% legend()
grid on
axis([-10, 10, 0, 12])
xlabel('x/m', 'color', 'k', 'fontsize', 18);
ylabel('y/m', 'color', 'k', 'fontsize', 18);
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zlabel('z/m', 'color', 'k', 'fontsize', 18);
view(2.5, 10)
hold on;

end

correction.m

clc, clear all;
g = 9.8;
m = 0.44;
r = 0.11;
rho = 1.29;
eta = 1.983 * 10^(-5);
G = 8/3 * pi * rho * r^3;
v = [0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0,

17.5, 20.0, 22.5, 25.0, 27.5, 30.0];
Cd = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,

0.5, 0.45, 0.4, 0.2, 0.1, 0.06];
v1 = 0:0.01:30;
Cd1 = interp1(v, Cd, v1, 'pchip');

%% find ans
dist_rec = [];
para = [];

for v0 = 12:1:30

for alpha = 0:pi / 18:pi / 2

for theta0 = 0:pi / 18:pi / 2

for w0 = 0:pi / 4:10 * 2 * pi
idx = find(v1 == v0);
Cd2 = Cd1(idx);
C = 0.5 * Cd2 * rho * pi * r^2;
dt = 0.001;
vh = [];
vxy = [];
vx = [];
vy = [];
x = [0];
y = [0];
z = [0];
k = 0;
theta = theta0;
vh0 = v0 * sin(alpha);
vxy0 = v0 * cos(alpha);
vx0 = vxy0 * cos(theta);
vy0 = vxy0 * sin(theta);
dvh = (-m * g - C * v0^2 * sin(alpha)) * dt / m;
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dvxy = (-C * v0^2 * cos(alpha)) * dt / m;
vh1 = vh0 + dvh;
vxy1 = vxy0 + dvxy;
vx1 = vxy1 * cos(theta);
vy1 = vxy1 * sin(theta);
y1 = y(end) + (vy0 + vy1) * dt / 2;
x1 = x(end) + (vx0 + vx1) * dt / 2;
z1 = z(end) + (vh0 + vh1) * dt / 2;
vx = [vx, vx0, vx1];
vy = [vy, vy0, vy1];
vh = [vh, vh0, vh1];
x = [x, x1];
y = [y, y1];
z = [z, z1];
vh = [vh, vh0, vh1];
vxy = [vxy, vxy0, vxy1];

while y1 < 11 & z >= 0
k = k + 1;
theta = theta0 + G * w0 / (9 * pi * eta * r) *
(1 - exp(-9 * pi * eta * r / m * dt * k));
v = sqrt(vh(end)^2 + vxy(end)^2);
dvh = (-m * g - C * v^2 * sin(alpha)) * dt / m;
dvxy = (-C * v^2 * cos(alpha)) * dt / m;
vh1 = vh(end) + dvh;
vxy1 = vxy(end) + dvxy;
vh = [vh, vh1];
vxy = [vxy, vxy1];
vx1 = vxy(end) * cos(theta);
vy1 = vxy(end) * sin(theta);
y1 = y(end) + (vy(end - 1) + vy(end)) * dt / 2;
x1 = x(end) + (vx(end - 1) + vx(end)) * dt / 2;
z1 = z(end) + (vh(end) + vh(end - 1)) * dt / 2;
vx = [vx, vx1];
vy = [vy, vy1];
vh = [vh, vh1];
x = [x, x1];
y = [y, y1];
z = [z, z1];

end

if (0 < x(end)) && (x(end) < 3.55) &&
(0 < z(end)) && (z(end) < 2.33)
dist = sqrt((x(end) - 3.55)^2 + (z(end) - 2.33)^2);
dist_rec = [dist_rec; dist];
para = [para; v0, alpha, theta0, w0];

elseif (x(end) <= 0) && (x(end) >- 3.55) &&
(0 < z(end)) && (z(end) < 2.33)
dist = sqrt((x(end) + 3.55)^2 + (z(end) - 2.33)^2);
dist_rec = [dist_rec; dist];
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para = [para; v0, alpha, theta0, w0];
end

end

end

alpha
end

v0
end


