
The analysis of three people bouncing on a trampoline problem.
Team 471

Problem B: Trampoline Jumping

Abstract
In this paper we have found a solution to a problem regarding three people jumping on a

trampoline. We have created a theoretical model using which we have found approximations of
the parameters required for each person to reach their maximum height jump. Afterwards we have
created a numerical simulation of the problem which we used to get an even better approximation
of the parameters. To analyse the three body on the trampoline problem we have used these
parameters and we have found the optimal strategy of jumping in order to launch one person as
high as it is possible. Simulating three people jumping on the trampoline according to our strategy,
we have found out that the person of mass 25 kg could jump as high as 3.2 m, around 2.7 meters
higher than by themselves. For the person of mass 40 kg it was 2.74 m, around 2 meters higher
than by themselves and accordingly for the heaviest person – 50 kg – it was 2.39 m, the lowest
height of them all despite being the best jumper on their own.

1

1 Introduction
It is a well known fact, that when multiple people jump on a trampoline at the same time, the maximal
heights they can obtain are much greater than when jumping alone. The aim of this paper is to analyse
the problem of three people bouncing on a round trampoline, and find the maximal heights each of
them can obtain, knowing that their masses are 25, 40 and 50 kg, and when jumping alone they can
reach maximally 0.5, 0.8 and 1.2 m respectively.

2 Trampoline model of one player
It is necessary to build a working model of a trampoline. We will assume it is cylindrically symmetric.
The optimal place for bouncing in order to achieve maximal height is the center of the trampoline. It
is the case, because when jumping on a stiff surface (like ground), we don’t bounce on it, but rather
cushion the fall with our legs, and then jump. On an elastic and highly deformable surface however, we
don’t have to cushion the fall, and we can add energy to the already present in the system. So as the
trampoline’s center is the most deformable, and the further we get from it the stiffer the trampoline’s
surface gets on impact, it is then the center that has the smallest energy losses due to this cushioning.
This effect won’t be analysed in our models separately, but the fact that we model bouncing in the
trampoline’s center is the effect of it.

We will model the player as a material point at the middle of the trampoline. Forces acting on the
player are due to gravity and loaded springs. The second of these forces is approximated by

Ft(z) = Nkz

(
1− R√

R2 + z2

)
, (1)

where N is the number of strings, k is their spring constant (we assume that the springs are identical),
R is the radius of the trampoline, and z is the coordinate of the jumping person (the z axis is directed
upwards). We set that z = 0 at the center of an undeformed surface.
Due to air resistance, a drag force acts on the surface of the trampoline:

Fa(z, ż) = ca
π

6

R2√
1 + z2

R2

ż2sgn(ż), (2)

where ca is the air resistance coefficient. There is also a damping force, originating from hysteresis
and heating of springs. We will assume that it is linearly proportional to the velocity:

Fd(z, ż) = cdż. (3)

This derivation of forces was inspired by [1]. Together those equations give the equation of motion for
the jumping person:

(m+
1

3
M)z̈ = −Ft(z)− Fa(z, ż)− Fd(z, ż),

what can be rewritten as:

(m+
1

3
M)z̈ = −Nkz

(
1− R√

R2 + z2

)
− ca

π

6

R2√
1 + z2

R2

ż2sgn(ż)− cdż. (4)

The coefficient before the mat’s mass M is obtained by integration over the whole mat, as follows:

We know that for central stretching the velocity of a point in distance r from the mat’s center is

v(r) = v0

(
1− r

R

)
, (5)

2

where v0 is the velocity of the mat’s center. Thus we can write the acceleration as a(r) = a0
(
1− r

R

)
where a0 is the acceleration of the center. Using that we can write the mat’s equation of motion:∫

S

ρa(r) = 2πρz̈

∫ R

0

r(1− r

R
)dr =

1

3
πρR2z̈ =

1

3
Mz̈. (6)

We neglect the fact, that density changes due to stretching, because this change is small, and the factor
before M is only approximate.

2.1 Stationary solution
A ball falling from certain height will bounce lower and lower due to damping and air resistance. A
player on the other hand can jump while on the trampoline, generating energy ∆E with his leg muscles.
For the stationary solution, we know that this generated energy will be equal to the losses of energy in
one jumping cycle. We want to approximate this energy. In order to do that we can observe that the
trampoline movement of the player can be approximated as a harmonic oscillator. At the beginning of
the cycle, when the player is directly above the trampoline, he has maximal velocity, thus his velocity
can be approximated by v(t) = v0cos(ωt), where ω is its characteristic frequency. Jumping on the
trampoline takes half of the period π

ω thus we can approximate the energy losses as:

−∆E1 =

∫
0.5cycle

(Fa + Fd)(−êz) · êzdz = −
∫ π

ω

0

(
ca

π

6

R3

√
R2 + z2

ż3sgn(ż) + cdż
2

)
dt (7)

Now we can approximate that R3
√
R2+z2

≈ R2, because we want only order of magnitude approximate
and deformation of typical trampoline for light players is smaller than the radius, thus we will ignore
z2

R2 terms.
If we now input our anzatz ż = v0cos(ωt), we get:

∆E1 = 2ca
π

6
R2 v

3
0

ω

∫ π
2

0

cos3(x)dx+ 2cd
v20
ω

∫ π
2

0

cos2(x)dx =

(
4

3

ca
6
R2v0 +

1

2
cd

)
πv20
ω

(8)

We also should include the kinetic energy of the mat which density velocity is equal to v(r) =
v0

(
1− r

R

)
. This energy is lost after launching the player due to dumping of trampoline:

∆E2 =
1

2

∫
S

ρv(r)2 =
Mv20
12

(9)

Only unknown for a given trampoline is v0 - the escape velocity of a player. We ommit the drag during
free-fall phase, thus it can be approximated with the energy conservation rule v0 =

√
2ghmax. Where

hmax is the maximal height above trampoline surface equilibrium the player reaches.
Finally, we get energy expenditure of the player during one jump ∆E as a function of his maximal
height hmax:

∆E = ghmax

(
M

6
+

(
4ca
9

R2
√

2ghmax + cd

)
π

ω

)
(10)

This approximation for energy that the player needs to generate during one cycle can be tested with
a simulation solving differential equation. The stationary solution should be an attractor - thus not
depend on the initial conditions. For it, the maximal height can be measured and compared with the
one given at the beginning. ω was calculated numerically for simulation of the ball bouncing freely
(without kick) and measuring time spent on the trampoline during the first bounce.

3

3 Simulation of a single player
In order to test the theoretical model developed in sec. 2, we developed a simulation solving an
IVP (initial value problem) for ODE of evolution given by eq. 6. The implementation was created
in python, using the solve_ivp function from the scipy package, with Runge-Kutta of 8th order method.

3.1 Non-resonant fall from certain height
The movement of the player was divided into stages. First, there was a part of free fall, upon contact
with the trampoline the model with eq. 6 overtakes, to finally return to free fall phase upon leaving
the trampoline. We treat the collision with the mat as conserving energy, because the vast majority
of the energy losses has source in air resistance and spring heating.

The trampoline’s parameters shown in table 1 were chosen by scaling up the parameters given in
the reference [1], assuming that the spring elasticity constant and the mat’s density won’t change.

This simulation resulted in obtaining a damped oscillation we could expect, shown in figure 1.

Parameter Value Unit
R 2.5 m
M 6.25 kg
N 150 -
ca 2.3 Ns2/m4

cd 16 Ns/m

k =
{

96 kN/m, ∆L < 1.5 mm
2.7 kN/m, ∆L ≥ 1.5 mm

Table 1: Parameters assumed for the trampoline, where ∆L is the elongation of the spring

0 2 4 6 8 10
Time t

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Po
sit

io
n

in
 v

er
tic

al
 a

xi
s t

o
tra

m
po

lin
e

su
rfa

ce
 z

Body of mass 25 kg on a trampoline
Trajectory of body in z axis

Figure 1: The non- resonant oscillation of the player with the mass of 25 kg

4

3.2 Resonant jumping
In reality, a player jumping on a trampoline doesn’t act like a stiff material point, but during every
contact with the mat he adds to the system some energy produced by his muscles. Knowing that, we
can stop the solving of the equation of motion when the player stops in minimal z, change his kinetic
energy by this ∆E with velocity directed upwards, and resume solving the equation.

We implemented this technique with a manually written event for solve_ivp. We have indeed
obtained an attractor (as shown in figure 3.2), and in order to find the correct values of ∆E we first
computed its values using the theoretical model 10, and by manual tweaks we optimised its value for
every player separately in order for their maximal jumping height while bouncing alone hmax to be
close to the given values.

Thus, we obtained ∆E for every player, as shown in table 2.

Player’s mass, (kg) ∆E0, (J) ∆E, (J) Obtained hmax, (m)
25 123.25 126 0.496
40 215.04 220 0.799
50 347.03 343 1.202

Table 2: The theoretically obtained values of jump energy ∆E0 and the values ∆E obtained from the
resonant jumping simulation

It is worthy to emphasise the fact that the theoretically obtained values of ∆E are within 3% of
the values obtained in the simulation. It shows the correctness of both the model and the simulation.

The comparison of the computed trajectories beginning in z = 0 with no initial velocity for different
players is shown on figure 3.2.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time t

0.50

-0.4

-0.2

0.0

0.2

0.4

Po
sit

io
n

in
 v

er
tic

al
 a

xi
s t

o
tra

m
po

lin
e

su
rfa

ce
 z

Body of mass 25 kg on a trampoline

Trajectory of body in z axis
Maximum height reached

0 5 10 15 20
Time t

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Po
sit

io
n

in
 v

er
tic

al
 a

xi
s t

o
tra

m
po

lin
e

su
rfa

ce
 z

Body of mass 40 kg on a trampoline

Trajectory of body in z axis
Maximum height reached

0 5 10 15 20
Time t

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Po
sit

io
n

in
 v

er
tic

al
 a

xi
s t

o
tra

m
po

lin
e

su
rfa

ce
 z

Body of mass 50 kg on a trampoline

Trajectory of body in z axis
Maximum height reached

Figure 2: The comparison of the resonant trajectories with z(t = 0) = 0, v(t = 0) = 0

We have also analysed whether we will reach this value with different initial conditions, as such
starting height z = 1 but for all initial conditions we have found that our trajectory will stabilise
around the same hmax for a given jump energy.

5

4 Model of three players
The trampoline’s radius R = 2.5 m is big in comparison with the human size, and the greatest height
one can obtain is while jumping on the trampoline’s center, so the optimal solution for the problem
shouldn’t be much different than the solution obtained with the assumption that all three players are
jumping in the center of the mat, and cannot collide with each other.

The idea of the solution is based on [2]. When we consider a two-player static (no leg work) prob-
lem, we can observe that if contact with the trampoline times are far apart, every player is described
by one player bouncing model 2. On the other hand, if times of contact are similar, they can transfer
the energy between themselves using the trampoline. In a simple model if player A is making contact
with the trampoline surface first he will be gradually slowed down. In the meantime player B who
is near him is falling freely, thus accelerating. If the distance between them is small, there will be a
moment when player B catches up to A, while having greater speed, thus he will be slowed down by
the trampoline, while player A will start accelerating in free fall. They will switch positions, up to the
point when both their velocities will be close to zero. Now the reverse process, where the trampoline
accelerates them in turns will take place. During this process, at some point one of the players will
leave the trampoline and never come back in this cycle, and due to the presence of the second player
his escape velocity will be smaller than if the second player was not present. It will result in energy
transfer to the second player. According to [2] if the players will keep bouncing, they will randomly
transfer energy between each other.

It is the main difference between the single and multiple player problems. As we can see, 3 players
(kids) can keep bouncing not interfering with each other, until all of them have reached their maximal
heights. Thus they can pool together a lot of energy in order to launch one of them.

In the next step they need to focus on transferring as much energy as possible toward one of the
players. We developed a simple model of optimizing such a transfer. First, one player lands on the
trampoline and stretches it until he stops moving. Then, as he has no more energy that he could insert
into the trampoline, he can jump, and on his place another player lands, exactly in the moment of
jumping (fig. 3). This means that instead of accelerating the first player, the trampoline gets further
deformed. The second player freely fell from his maximal height and has maximal kinetic energy,
which is now transmitted into the trampoline. And when the second player stops, he jumps like the
first one, and on his place in this exact moment lands the third player, preventing the trampoline from
transferring any energy into the second player. Now the third player waits until he stops, then he jumps,
and this time the trampoline accelerates him with all of the energy stored in it (except eventually some
small part, transferred possibly to the second player if the third player with the trampoline accelerates
enough to get ahead of him before reaching z=0, but it is already after the majority of the energy got
transferred). It is easy to observe, that the acceleration is higher, when strings are more streched, thus
majority of the energy stored in springs will be transferred to the intended target.

5 Simulation of three players
The algorithm mentioned in the previous paragraph has been implemented using the earlier written
program simulating one player, and indeed, the height the last player jumping obtains much exceeds
the heights of the other players, as shown in table 3.

6

Figure 3: The schematic of a trampoline with balls separated in a way, allowing maximal transfer of
energy towards one player. By engaging with the trampoline in the moment, when previous kid stops
to a halt, players can store the greatest amount of energy in the trampoline, to eject one of them.

Player 1 (kg) Player 2 (kg) Player 3 (kg) h1 (m) h2, (m) h3, (m)
40 50 25 0.028 0.812 3.200
50 40 25 0.116 1.019 2.940
25 50 40 0.050 0.278 2.744
50 25 40 0.098 0.608 2.534
25 40 50 0.050 0.112 2.386
40 25 50 0.024 0.241 2.374

Table 3: The jump heights obtained while simulating the sequential trampoline stretching by players
in given order

On the following figures 4, 5 and 6 the trajectories and velocities are shown in function of time for
every player when he jumps last (the higher of the two jumps in each case was chosen).

7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time t

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Po
sit

io
n

in
 v

er
tic

al
 a

xi
s t

o
tra

m
po

lin
e

su
rfa

ce
 z 40 kg

50 kg
25 kg

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time t

6

4

2

0

2

4

6

8

Ve
lo

cit
y

in
 v

er
tic

al
 a

xi
s t

o
tra

m
po

lin
e

su
rfa

ce
 z 40 kg

50 kg
25 kg

Figure 4: The optimal jump for the 25 kg player, locations and velocities in the function of time

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time t

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Po
sit

io
n

in
 v

er
tic

al
 a

xi
s t

o
tra

m
po

lin
e

su
rfa

ce
 z 25 kg

50 kg
40 kg

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time t

6

4

2

0

2

4

6

8

Ve
lo

cit
y

in
 v

er
tic

al
 a

xi
s t

o
tra

m
po

lin
e

su
rfa

ce
 z 25 kg

50 kg
40 kg

Figure 5: The optimal jump for the 40 kg player, locations and velocities in the function of time

8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time t

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Po
sit

io
n

in
 v

er
tic

al
 a

xi
s t

o
tra

m
po

lin
e

su
rfa

ce
 z 25 kg

40 kg
50 kg

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time t

6

4

2

0

2

4

6

Ve
lo

cit
y

in
 v

er
tic

al
 a

xi
s t

o
tra

m
po

lin
e

su
rfa

ce
 z 25 kg

40 kg
50 kg

Figure 6: The optimal jump for the 50 kg player, locations and velocities in the function of time

9

6 Problems and discussion
6.1 Problem with energy
It is a well-known fact that many people jumping on a trampoline at the same time can reach much
greater heights than when jumping alone, so the results seem to be of the correct form, increasing
the height by the order of 3. It is unlikely that they are close to the exact values, because for the
50 kg player the system’s total energy grows from 1025 J by 214 J, which is of the same order of
magnitude as the sum of energies added by the muscles Σ∆E = 689 J. It is possible, that the model of
instantaneous jump does not reflect reality well, and final velocity of the escaping player is too large,
thus the maximal height is overestimated. The total energy of players after ejecting one of them is
pretty much the same in every variation of order. It may be possible that in reality damping and drag
forces do not balance the 3 players giving energy into the system. Most of the energy is in the ejected
player, the smallest one will achieve the highest altitude, what is confirmed by our simulation.

6.2 Discussion and implications
The results although big are the correct order of magnitude and are in alignment with simple models
of energy transfer omitting energy losses [2] and experimental results [1]. Some interesting conclusions
may arise from our work.
First, what is intuitive energy generated by a player ∆E is an increasing function of mass of the player
- greater muscle mass leads to higher generated power.
Second, single-player movement on the trampoline is given by the attractor, which does not depend
on the initial conditions. No matter how certain player starts jumping after some time he jump with
his maximal height.
Adding multiple players on one trampoline leads to chaotic behavior and energy transfers between
them. Thus it is easy to see, that using the trampoline in a group can be way more interesting and
fun, than jumping alone.
In the case of multiple players, it is possible for them to accidentally eject one of them way higher, than
his maximal height. Maybe not by a factor of 3, as we calculated for an optimal situation, but it can
still be dangerous for trampoline users. Falling from a height of more than 2 meters can cause twisted
ankles and other injuries. Thus it is important to find ways to reduce possible maximum ejecting
height while keeping the same maximum height for each player. From our model it can observed,
that in the process of ejection, much higher maximal speeds are achieved (in some cases almost 8m

s),
thus the air drag on the trampoline starts to play a dominant role compared to dumping. It may be
beneficial to design the trampoline in a way, that has a larger drag coefficient ca, rather than damping
one cd.
Finally we can observe, that the lightest player was ejected the highest. This phenomenon can be
explained intuitively, all the players store their energy in the trampoline, lightest player may have
lowest power generating abilities ∆E, thus lowest single-bouncing maximal height hmax, but if all the
players store their energy in the trampoline, the maximal height given by:

h =
Etotal

mg
(11)

Will be highest for smallest players if the total energy is the same. Of course, we cannot assume that
all the energy is transferred into him, what can be observed in our simulation, but the intuition is
right, thus while multiple people are playing on the trampoline it is really important to take safety of
smaller kids seriously. In the same time it may be advantageous for breaking height records, to eject
the smallest player.

10

7 Summary
In this paper a model of a single player bouncing on a trampoline was proposed. Both simulation and
theoretical calculations gave a similar result for the energy produced by the muscles of each player
during one jump (table 2), which is an important proof of the model’s accuracy.
A model of three players bouncing simultaneously was proposed, and a strategy for obtaining the
highest possible jump for a chosen player was constructed. It was then implemented in a simulation,
and computed for every possible order in which the players can land on the trampoline (table 3). The
highest jumps for the players weighing 25, 40 and 50 kg are respectively 3.200, 2.744 and 2.386 m.
The trajectories and velocity plots for these highest jumps were drawn (figures 4, 5 and 6).

11

8 Appendix
To this paper there are added two scripts written in Python, the first one used to numerically model a
ball dropped on a trampoline and to find the correct parameters for each person for them to be able to
reach their maximum height. The second one was used to numerically simulate a three body jumping
process on a trampoline and to find out how far can each person jump using a strategy described in the
paper. More about scripts is written inside them using comments. In these scripts we are searching
for the evolution of our system by simply solving the differential equations given by our theoretical
model with forces acting on the bodies on the trampoline. To solve such differential equations we
use command from the library scipy to python. There is more to these scripts besides simply solving
differential equations, to find out which body is in contact with the trampoline we check the positions
of each body during every part of solving the differential equations. Based on this which body is in
contact with the trampoline, the equations for such body change, because when they are away from the
trampoline they are simply free falling and when they are on the trampoline, the differential equations
are the same as given by us in the theoretical model. When the body hits the trampoline we have to
use the conservation of the energy law to find the velocity after the hit. To introduce bouncing from
the trampoline we have to quit solving the differential equations, change the condition by adding some
value to the velocity of a body bouncing and once again solve the differential equations right now with
new initial conditions.

import numpy as np
import matp lo t l i b . pyplot as p l t
import math as m
from s c ipy . i n t e g r a t e import so lve_ivp
#parameters o f the trampol ine and a i r
R = 2.5 #rad ius o f the trampo l ine
Mm = (2 . 5)∗∗2 #trampol ine ’ s mat mass
Ns = 150 #number o f s p r in g s
Ca = 2.3 #ai r r e s i s t a n c e c o e f f i c i e n t
Cd = 16 #damping c o e f f i c i e n t
g = 9.81 #standard g r a v i t y cons tant
mass = [2 5 , 4 0 , 5 0] #mass o f each person
energy = [126 , 220 , 343] #amount o f energy each person uses wh i l e jumping
hmax = [0 . 5 , 0 . 8 , 1 . 2] #maximum h e i g h t reached by a person wh i l e jumping a lone
order = [1 , 2 , 0] #here we choose order o f bod i e s dropping on the trampol ine
for l i s t a in mass , energy , hmax :

help = np . copy (l i s t a)
for i in range (len (l i s t a)) :

l i s t a [i] = help [o rder [i]]
print (mass , hmax , energy)
def dL(H) : #change o f l e n g t h o f s p r in g s wh i l e s t r e t c h i n g the trampol ine

return m. sq r t (R ∗∗ 2 + H ∗∗ 2) − R
def ks (H) : #change o f s p r in g s c o e f f i c i e n t due to s t r e t c h i n g

i f dL(H) < 1 .5 e −3:
return 96000

else :
return 2700

def Ft (H) : #v e r t i c a l f o r c e o f a l l the sp r in g s
return Ns ∗ ks (np . abs (H)) ∗ (m. sq r t (R ∗∗ 2 + H ∗∗ 2)−R)∗
(H / (m. sq r t (R ∗∗ 2 + H ∗∗ 2)))

def Fa(H) : #ai r r e s i s t a n c e
return (2 ∗ np . p i ∗ Ca) / R / m. sq r t (R ∗∗ 2 + H ∗∗ 2) ∗ ((R ∗∗ 4) / 4 −
2 ∗ R ∗ R ∗∗ 3 / 3 + R ∗∗ 2 ∗ R ∗∗ 2 / 2)

12

def onebody (t , z , mass=mass [0]) : #equa t ions d e s c r i b i n g e v o l u t i o n
o f a system with one body

x , v = z
dx = v
i f x > 0 :

dv = −g
else :

dv = −Ft (x) − mass ∗ g − Fa(x) ∗ v∗∗2 ∗ np . s i gn (v) − Cd∗v
dv = dv /(mass+(1/3)∗Mm)

return np . array ([dx , dv])
def th r e ebod i e s (t , z) : #equa t ions d e s c r i b i n g e v o l u t i o n o f a system with th r ee bod i e s

p o s i t i o n s = z [: 3]
v e l o c i t i e s = z [3 :]
v1 , v2 , v3 = v e l o c i t i e s
p o s i t i o n e q u a t i o n s = [0 , 0 , 0]
v e l o c i t i e s e q u a t i o n s = [0 , 0 , 0]
p o s i t i o n e q u a t i o n s [0] = v1
p o s i t i o n e q u a t i o n s [1] = v2
p o s i t i o n e q u a t i o n s [2] = v3
i f min(p o s i t i o n s) > 0 :

v e l o c i t i e s e q u a t i o n s [0] = −g
v e l o c i t i e s e q u a t i o n s [1] = −g
v e l o c i t i e s e q u a t i o n s [2] = −g

else :
v e l o c i t i e s e q u a t i o n s [0] = −g
v e l o c i t i e s e q u a t i o n s [1] = −g
v e l o c i t i e s e q u a t i o n s [2] = −g
index = np . where (p o s i t i o n s == min(p o s i t i o n s)) [0]
for i in range (len (index)) :

v e l o c i t i e s e q u a t i o n s [index [i]] =
−Ft (p o s i t i o n s [index [i]]) − mass [index [i]] ∗
g − Fa(p o s i t i o n s [index [i]]) ∗ v e l o c i t i e s [index [i]] ∗ ∗ 2 ∗ np . s i gn (v e l o c i t i e s [index [i]]) −
Cd∗ v e l o c i t i e s [index [i]]
v e l o c i t i e s e q u a t i o n s [index [i]] =
v e l o c i t i e s e q u a t i o n s [index [i]] / (mass [index [i]]+(1/3)∗Mm)

return np . array ([p o s i t i o n e q u a t i o n s [0] , p o s i t i o n e q u a t i o n s [1] , p o s i t i o n e q u a t i o n s [2] , v e l o c i t i e s e q u a t i o n s [0] , v e l o c i t i e s e q u a t i o n s [1] , v e l o c i t i e s e q u a t i o n s [2]])
def twobodies (t , z) : #equa t ions d e s c r i b i n g e v o l u t i o n o f a system with two bod i e s

p o s i t i o n s = z [: 2]
v e l o c i t i e s = z [2 :]
v1 , v2 = v e l o c i t i e s
p o s i t i o n e q u a t i o n s = [0 , 0]
v e l o c i t i e s e q u a t i o n s = [0 , 0]
p o s i t i o n e q u a t i o n s [0] = v1
p o s i t i o n e q u a t i o n s [1] = v2
i f min(p o s i t i o n s) > 0 :

v e l o c i t i e s e q u a t i o n s [0] = −g
v e l o c i t i e s e q u a t i o n s [1] = −g

else :
v e l o c i t i e s e q u a t i o n s [0] = −g
v e l o c i t i e s e q u a t i o n s [1] = −g
index = np . where (p o s i t i o n s == min(p o s i t i o n s)) [0]
for i in range (len (index)) :

13

v e l o c i t i e s e q u a t i o n s [index [i]] =
−Ft (p o s i t i o n s [index [i]]) − mass [index [i]]
∗ g − Fa(p o s i t i o n s [index [i]]) ∗ v e l o c i t i e s [index [i]] ∗ ∗ 2 ∗ np . s i gn (v e l o c i t i e s [index [i]])
− Cd∗ v e l o c i t i e s [index [i]]
v e l o c i t i e s e q u a t i o n s [index [i]] = v e l o c i t i e s e q u a t i o n s [index [i]] / (mass [index [i]]+(1/3)∗Mm)

return np . array ([p o s i t i o n e q u a t i o n s [0] , p o s i t i o n e q u a t i o n s [1] , v e l o c i t i e s e q u a t i o n s [0] , v e l o c i t i e s e q u a t i o n s [1]])
’ ’ ’
For two and more bod i e s our a l gor i thm works in a way ,
t h a t when one o f the bod i e s reaches the p o s i t i o n under
0 (i t means i t reaches the trampol ine
at the e q u i l i b r i u m with no mass on i t) , we are scanning
the p o s i t i o n s to f i n d the l owe s t one , the l owe s t one body i s in a con tac t wi th the trampo l ine
f o r t h i s body we app ly the equa t ions f o r v e l o c i t y as i t
f o l l o w s , and the o ther bod i e s are in a f r e e f a l l ; the trampol ine moves wi th the v e l o c i t y
o f a body on i t
’ ’ ’

#f u n c t i o n s used as even t s in so l ve_ivp f u n c t i o n s to f i n d t imes at which c e r t a i n va l u e s are equa l to zero
def v e l o c i t y 1 (t , z) : #f i n d time when v e l o c i t y o f the f i r s t body i s equa l to zero

return z [3]
def v e l o c i t y 2 (t , z) : #f i n d time when v e l o c i t y o f the second body i s equa l to zero

return z [4]
def v e l o c i t y 3 (t , z) : #f i n d time when v e l o c i t y o f the t h i r d body i s equa l to zero

return z [5]
def ve l o c i ty1 twobod i e s (t , z) : #f i n d time when v e l o c i t y o f the f i r s t body i s equa l to zero (f o r two body system)

return z [2]
def ve l o c i ty2 twobod i e s (t , z) : #f i n d time when v e l o c i t y o f the second body i s equa l to zero (f o r two body system)

return z [3]
def ve loc i tyonebody (t , z) : #f i n d time when v e l o c i t y o f the on ly body i s equa l to zero (one body system)

return z [1]
def c o l l i s i o n 1 (t , z) : #f i n d time when p o s i t i o n o f the t h i r d body i s equa l to p o s i t i o n o f the f i r s t one

return z [2] − z [0]
def c o l l i s i o n 2 (t , z) : #f i n d time when p o s i t i o n o f the t h i r d body i s equa l to p o s i t i o n o f the f i r s t one

return z [2] − z [1]
def p o s i t i o n f u n c (t , hmax , t i , h i) : #func t i on to f i n d p o s i t i o n o f a f r e e f a l l l i n g body be f o r e h i t t i n g the trampol ine f o r the f i r s t time

return hmax − g/2 ∗ (t −(t i −m. sq r t (2∗ (hmax−hi)/ g)))∗∗2
def v e l o c i t y f u n c (t , hmax , t i , h i) : #func t i on to f i n d v e l o c i t y o f a f r e e f a l l l i n g body be f o r e h i t t i n g the trampol ine f o r the f i r s t time

return −g ∗(t−t i+m. sq r t (2∗ (hmax−hi)/ g))
’ ’ ’

We imagine t h a t a l l the bod i e s s t a r t a t a c e r t a i n maximum he igh t ,
which i s reached by each body when jumping a lone and then from i t
i t f a l l s on a trampo l ine during a f r e e f a l l . According to our paper ,
we w i l l reach the h i g h e s t jump , when every next body h i t s the trampol ine
the moment the prev ious one reaches maximum depth f o r the trampol ine
(i t s v e l o c i t y reaches 0) . That ’ s why we s t a r t our s imu la t i on wi th on ly one body
at the l e v e l o f t rampol ine and v e l o c i t y gained from a f r e e f a l l
from maximum he igh t , m u l t i p l i e d by a c o e f f i c i e n t connected
to conserva t ion o f momenta .
’ ’ ’
z01 = [0. , −m. sq r t ((mass [0] / (mass [0]+Mm))∗ (2∗ g∗hmax [0]))]
r e s = solve_ivp (onebody , (0 . 3 , 1 5 .) , z01 , method=’DOP853 ’ , events=veloc i tyonebody , dense_output=True)
’ ’ ’
Using even t s we f i n d the time at which v e l o c i t y o f

14

the body reaches 0 , i t ’ s the moment when we want our
second body to h i t the trampol ine . We f i n d
TIME1 of t h i s event and h e i g h t o f t h i s body HMIN1
’ ’ ’

TIME1 = r e s . t_events [0] [0]
HMIN1 = r e s . y_events [0] [0] [0]
’ ’ ’

Now we s t a r t the e v o l u t i o n o f the two body system ,
we suppose t h a t the second body h i t s the trampol ine
when the v e l o c i t y o f the f i r s t one i s zero
t h a t ’ s why our i n i t i a l c ond i t i on s are as i t f o l l o w s ,
we change the speed o f the f i r s t body by a boos t from
us ing i t s l e g s on the trampo l ine su r f a c e
to launch h i m s e l f even f u r t h e r up , the v e l o c i t y o f the
second body comes from f r e e f a l l from i t s maximum h e i g h t
to the l o c a t i o n o f t rampol ine su r f a c e
’ ’ ’
z02=[HMIN1,HMIN1,0+np . sq r t (2∗ energy [0] / (mass [0]+Mm))
,−m. sq r t ((mass [1] / (mass [1]+Mm))∗ (2∗ g ∗(hmax[1] −HMIN1)))]
r e s1 = solve_ivp (twobodies , (TIME1, 1 5 .) , z02 , method=’DOP853 ’
, dense_output=True , events=(ve loc i ty1twobod i e s , v e l o c i ty2 twobod i e s))
’ ’ ’

We use even t s once again , t h i s time to f i n d the time
when v e l o c i t y o f the second body (the one on the trampol ine)
reaches 0 , so our t h i r d body
can h i t the trampol ine to gain maximum h e i g h t
’ ’ ’

A = res1 . t_events
B = re s1 . y_events
TIME2 = re s1 . t_events [1] [0]
HMIN2 = re s1 . y_events [1] [0] [1]
’ ’ ’

Now we s imu la t e the e v o l u t i o n o f a t h r ee body system ,
genera t ing the t h i r d body at the p o s i t i o n o f the second one ,
wi th v e l o c i t y gained during
the f r e e f a l l and m u l t i p l i e d by a c o e f f i c i e n t connected
to the conserva t ion o f momenta
’ ’ ’
z03 = [B [1] [0] [0] , HMIN2,HMIN2,B[1] [0] [2] , 0 +
np . sq r t (2∗ energy [1] / (mass [1]+Mm)) ,
−m. sq r t ((mass [2] / (mass [2]+Mm))∗ (2∗ g ∗(hmax[2] −HMIN2)))]
r e s2 = solve_ivp (threebod ie s ,
(TIME2, 1 . 6) , z03 , method=’DOP853 ’ ,
events=(v e l o c i t y 3) , dense_output=True)
’ ’ ’

We e v o l v e our system up u n t i l the moment the t h i r d body
(the one we want to launch) reaches v e l o c i t y equa l
to zero , to f i n d the moment when we w i l l
i n s t a n t a n e o u s l y push i t from the trampol ine wi th the energy dE
’ ’ ’

A = res2 . t_events
B = re s2 . y_events

15

TIME3 = A[0] [0]
z04 = [B [0] [0] [0] , B [0] [0] [1] , B [0] [0] [2] , B [0] [0] [3] , B [0] [0] [4] , B [0] [0] [5] + np . sq r t (2∗ energy [2] / (mass [2]+Mm))]
r e s3 = solve_ivp (threebod ie s , (TIME3, 1 . 6) , z04 , method=’DOP853 ’ , events=(c o l l i s i o n 1 , c o l l i s i o n 2) , dense_output=True)
’ ’ ’
The l a s t par t o f our e v o l u t i o n i s equipped wi th
the even t s t h a t check the p o s i t i o n s o f the body on
the trampol ine and the prev ious two bodies , so
when the trampol ine reaches one o f the bodies , the
v e l o c i t y o f t h i s system changes accord ing to the r u l e s o f momentum conservat ion , we didn ’ t do
i t f o r the prev ious c o l l i s i o n s , because the
v e l o c i t i e s where s i m i l a r and we cou ld j u s t
approximate t h a t the v e l o c i t y o f the trampol ine i s e x a c t l y
the same as the v e l o c i t y o f a body h i t t i n g i t
’ ’ ’
A1 = re s3 . t_events [0]
A2 = re s3 . t_events [1]
TIMES = [A1 [0] , A2 [0]]
TIME4 = min(TIMES)
TIMEINDEX = TIMES. index (min(TIMES))
B=re s3 . y_events [TIMEINDEX] [0]
v e l o c i t y a f t e r c o l l i s i o n = B[TIMEINDEX+3]
∗ m. sq r t (1 + Mm∗(B[5] ∗ ∗ 2 / B[TIMEINDEX+3]∗∗2 − 1)
/(6∗ (mass [TIMEINDEX]+Mm)))
z05 =[B[0] ,B [1] ,B [2] ,B [3] ,B [4] ,B [5]]
z05 [TIMEINDEX+3] = v e l o c i t y a f t e r c o l l i s i o n
#f r e e e v o l u t i o n o f a t h r ee body system
r e s4 = solve_ivp (threebod ie s , (TIME4, 1 . 6) , z05 ,
method=’DOP853 ’ , dense_output=True)
#L i s t s where we w i l l append p o s i t i o n s and momenta o f bod i e s
X1=[]
X2=[]
X3=[]
V1=[]
V2=[]
V3=[]
’ ’ ’
Times at which we want to e v a l u a t e the
p o s i t i o n s and momenta , the f i r s t t h r e e
t1dod , t2dod and t3dod are used f o r the
f r e e f a l l e v o l u t i o n
b e f o r e the s imu la t i on
’ ’ ’

#There can be an error regard ing the shapes
because o f the m. f l o o r funct ion , then we
have to add one more element in the np . l i n s p a c e ()
t1dod = np . l i n s p a c e (0 , 0 . 3 ,m. f l o o r (2 0 0 0 ∗ 0 . 3 / 1 . 5))
t2dod = np . l i n s p a c e (0 ,TIME1,m. f l o o r (2000∗TIME1/ 1 . 5))
t3dod = np . l i n s p a c e (0 ,TIME2,m. f l o o r (2000∗TIME2/ 1 . 5))
t1 = np . l i n s p a c e (0 . 3 ,TIME1,m. f l o o r (2000∗(TIME1−0 .3)/1 . 5))
t2 = np . l i n s p a c e (TIME1,TIME2,m. f l o o r (2000∗(TIME2−TIME1) / 1 . 5))
t3 = np . l i n s p a c e (TIME2,TIME3,m. f l o o r (2000∗(TIME3−TIME2) / 1 . 5))
t4 = np . l i n s p a c e (TIME3,TIME4,m. f l o o r (2000∗(TIME4−TIME3) / 1 . 5))

16

t5 = np . l i n s p a c e (TIME4, 1 . 6 ,m. f l o o r (2000∗(1.6 −TIME4) / 1 . 5))
#Here we append the f r e e f a l l e v o l u t i o n

for i in range (len (t1dod)) :
X1 . append (p o s i t i o n f u n c (t1dod [i] , hmax [0] , 0 . 3 , 0))
V1 . append (v e l o c i t y f u n c (t1dod [i] , hmax [0] , 0 . 3 , 0))

for i in range (len (t2dod)) :
X2 . append (p o s i t i o n f u n c (t2dod [i] , hmax [1] , TIME1,HMIN1))
V2 . append (v e l o c i t y f u n c (t2dod [i] , hmax [1] , TIME1,HMIN1))

for i in range (len (t3dod)) :
X3 . append (p o s i t i o n f u n c (t3dod [i] , hmax [2] , TIME2,HMIN2))
V3 . append (v e l o c i t y f u n c (t3dod [i] , hmax [2] , TIME2,HMIN2))

#Here we append e lements coming from the e v o l u t i o n i n s i d e the d i f f e r e n t i a l e qua t i ons
for i in range (len (t1)) :

X1 . append (r e s . s o l (t1) [0] [i])
V1 . append (r e s . s o l (t1) [1] [i])

for i in range (len (t2)) :
X1 . append (r e s1 . s o l (t2) [0] [i])
X2 . append (r e s1 . s o l (t2) [1] [i])
V1 . append (r e s1 . s o l (t2) [2] [i])
V2 . append (r e s1 . s o l (t2) [3] [i])

for i in range (len (t3)) :
X1 . append (r e s2 . s o l (t3) [0] [i])
X2 . append (r e s2 . s o l (t3) [1] [i])
X3 . append (r e s2 . s o l (t3) [2] [i])
V1 . append (r e s2 . s o l (t3) [3] [i])
V2 . append (r e s2 . s o l (t3) [4] [i])
V3 . append (r e s2 . s o l (t3) [5] [i])

for i in range (len (t4)) :
X1 . append (r e s3 . s o l (t4) [0] [i])
X2 . append (r e s3 . s o l (t4) [1] [i])
X3 . append (r e s3 . s o l (t4) [2] [i])
V1 . append (r e s3 . s o l (t4) [3] [i])
V2 . append (r e s3 . s o l (t4) [4] [i])
V3 . append (r e s3 . s o l (t4) [5] [i])

for i in range (len (t5)) :
X1 . append (r e s4 . s o l (t5) [0] [i])
X2 . append (r e s4 . s o l (t5) [1] [i])
X3 . append (r e s4 . s o l (t5) [2] [i])
V1 . append (r e s4 . s o l (t5) [3] [i])
V2 . append (r e s4 . s o l (t5) [4] [i])
V3 . append (r e s4 . s o l (t5) [5] [i])

#Here we p l o t every th ing , b e f o r e p l o t t i n g we shou ld change the l a b e l s , here they are s e t f o r f i r s t body = 50 kg , second body = 40 kg , t h i r d body = 25 kg "

p l t . f i g u r e ()
p l t . p l o t (np . concatenate ((t1dod , t1 , t2 , t3 , t4 , t5)) ,X1 , l a b e l=f ’ {mass [0] } ␣kg ’ , l i n ew id th =1.6)
p l t . p l o t (np . concatenate ((t2dod , t2 , t3 , t4 , t5)) ,X2 , l a b e l=f ’ {mass [1] } ␣kg ’ , c=’ red ’ , l i n e s t y l e=’ −. ’ , l i n ew id th =1.6)
p l t . p l o t (np . concatenate ((t3dod , t3 , t4 , t5)) ,X3 , l a b e l=f ’ {mass [2] } ␣kg ’ , c=’ orange ’ , l i n e s t y l e=’−− ’ , l i n ew id th =1.6)
p l t . y l a b e l (’ Po s i t i on ␣ in ␣ v e r t i c a l ␣ ax i s ␣ to␣ trampol ine␣ s u r f a c e ␣z ’)
p l t . x l a b e l (’Time␣t ’)
p l t . l egend ()

17

p l t . show ()
p l t . f i g u r e ()
p l t . p l o t (np . concatenate ((t1dod , t1 , t2 , t3 , t4 , t5)) ,V1 ,
l a b e l=f ’ {mass [0] } ␣kg ’ , l i n ew id th =1.6)
p l t . p l o t (np . concatenate ((t2dod , t2 , t3 , t4 , t5)) ,V2 ,
l a b e l=f ’ {mass [1] } ␣kg ’ , c=’ red ’ , l i n e s t y l e=’ −. ’ , l i n ew id th =1.6)
p l t . p l o t (np . concatenate ((t3dod , t3 , t4 , t5)) ,V3 , l a b e l=f ’
{mass [2] } ␣kg ’ , c=’ orange ’ , l i n e s t y l e=’−− ’ , l i n ew id th =1.6)
p l t . y l a b e l (’ Ve l oc i ty ␣ in ␣ v e r t i c a l ␣ ax i s ␣ to␣ trampol ine␣ s u r f a c e ␣z ’)
p l t . x l a b e l (’Time␣t ’)
p l t . l egend ()
p l t . show ()
#Here we can check the maximum va lue s o f the h e i g h t o f bod i e s during the whole e v o l u t i o n

print (max(X1))
print (max(X2))
print (max(X3))

[language=Python]

import numpy as np
import matp lo t l i b . pyplot as p l t
import math as m
from s c ipy . i n t e g r a t e import so lve_ivp
’ ’ ’
Code used to numer ica l l y s imu la t e a b a l l f a l l l i n g
on a trampol ine wi thout e x t ra energy bounces to
reach a c e r t a i n maximum energy and in the next loop
we add the p o s s i b l i t y o f us ing the energy dE by
the body to bounce i t s e l f h i ghe r than p r e v i o u s l y
and reach i t s maximum energy . A l l v a r i a b l e names are
the same as in the o ther code
’ ’ ’

Rm = 2.5
Rf = 2 .7
Mm = (2 . 5)∗∗2
Ns = 150
Ca = 2 .3
Cd = 16
Fc = 2 .5
g = 9.81
Mb = 25
dE = 126

def dL(H) :
return m. sq r t (Rf ∗∗ 2 + H ∗∗ 2) − Rf

def ks (H) :
i f dL(H) < 1 .5 e −3:

return 96000
else :

18

return 2700

def Ft (H) :
return Ns ∗ ks (np . abs (H)) ∗
(m. s q r t (Rf ∗∗ 2 + H ∗∗ 2)−Rf)
∗(H / (m. sq r t (Rf ∗∗ 2 + H ∗∗ 2)))

def Fa(H) :
return (2 ∗ np . p i ∗ Ca) / Rf / m. sq r t (Rf ∗∗ 2 + H ∗∗ 2)
∗ (

(Rm ∗∗ 4) / 4 − 2 ∗
Rf ∗ Rm ∗∗ 3 / 3 + Rf ∗∗ 2 ∗ Rm ∗∗ 2 / 2)

def f unc t i on (z , t) :
x , v = z
dx = v
i f x > 0 :

dv = −g
else :

dv = −Ft (x) − Mb ∗ g − Fa(x) ∗ v∗∗2 ∗ np . s i gn (v) − Cd∗v
dv = dv /(Mb+Mm/3)

return np . array ([dx , dv])
def f unc t i on1 (t , z) :

x , v = z
dx = v
i f x > 0 :

dv = −g
else :

dv = −Ft (x) − Mb ∗ g − Fa(x) ∗ v∗∗2 ∗ np . s i gn (v) − Cd∗v
dv = dv /(Mb+Mm/3)

return np . array ([dx , dv])
def v e l o c i t y (t , z) :

return z [1]
" " "
Part o f code used to numer ica l l y s imu la t e a b a l l
f a l l i n g on a trampol ine , not pushing i t s e l f from the su r f a c e
" " "
t1=0
t3 = np . l i n s p a c e (0 , 17 .48728557571967 , 200000)
t = np . l i n s p a c e (t1 , 11 , 10000)
z0 = [0 , 0]
r e s = solve_ivp (funct ion1 , (0 , 11) , z0 , method=’DOP853 ’ ,
events=v e l o c i t y , dense_output=True)
F = r e s . s o l (t) [0]
p l t . f i g u r e (f i g s i z e =(14 , 8))
p l t . t i t l e (’Body␣ o f ␣mass␣25␣kg␣on␣a␣ trampol ine ’)
p l t . p l o t (t , r e s . s o l (t) [0] , l a b e l=’ Tra jec tory ␣ o f
body␣ in ␣z␣ ax i s ’)
p l t . y l a b e l (’ Po s i t i on ␣ in ␣ v e r t i c a l ␣ ax i s ␣ to␣ trampol ine

19

s u r f a c e ␣z ’)
p l t . x l a b e l (’Time␣t ’)
p l t . l egend ()
p l t . show ()
X=[]
V=[]
’ ’ ’
Part o f code used to numer ica l l y s imu la t e a person
as a point , f a l l i n g on a trampol ine and boo s t i n g
i t s e l f (us ing l e g s) from i t s
su r f a c e by ga in ing some dE t o g e t h e r wi th the trampol ine .
’ ’ ’
for i in range (2 0) :

va lue s =[]
t imes =[]
A=0
B=0
r e s=0
r e s = solve_ivp (funct ion1 , (t1+1e −5 ,300) , z0 , method=’DOP853 ’ , events=v e l o c i t y , dense_output=True)
A = r e s . t_events
B = r e s . y_events
for i in range (len (A [0])) :

i f B [0] [i] [0] < 0 :
va lue s . append (B [0] [i])
t imes . append (A [0] [i])

t2 = t1
t1 = times [0]
print (t2 , t1)
t4 = np . l i n s p a c e (t2 , t1 , 10000)
X. append (r e s . s o l (t4) [0])
V. append (r e s . s o l (t4) [1])
z0=[va lue s [0] [0] , va lue s [0] [1] + np . sq r t (2 ∗ dE / (Mm+Mb))]

X1 =[]
V1 =[]
for i in range (len (X)) :

for j in range (10000) :
X1 . append (X[i] [j])
V1 . append (V[i] [j])

g ran i ca =[]
x t i k i = [−0 .4 , −0 .2 , 0 . 0 , 0 . 2 , 0 . 4]
for i in range (len (X1)) :

g ran i ca . append (0 .803639780522247)
p l t . f i g u r e (f i g s i z e =(14 , 8))
p l t . t i t l e (’Body␣ o f ␣mass␣25␣kg␣on␣a␣ trampol ine ’)
p l t . p l o t (t3 , X1 , l a b e l=’ Tra jec tory ␣ o f ␣body␣ in ␣z␣ ax i s ’)
p l t . y l a b e l (’ Po s i t i on ␣ in ␣ v e r t i c a l ␣ ax i s ␣ to␣ trampol ine␣ s u r f a c e ␣z ’)
p l t . x l a b e l (’Time␣t ’)
p l t . y t i c k s ([0 . 5 0] + x t i k i , [" 0 .50 "]+ x t i k i)
#p l t . p l o t (t3 , granica , ’−− ’ , c=’ red ’ , l a b e l =’Maximum h e i g h t reached ’)
p l t . axh l ine (0 .5031372855361776 , l i n e s t y l e=’−− ’ ,
c o l o r=’ r ’ , l a b e l=’Maximum␣he ight ␣ reached␣ ’)
p l t . l egend (l o c=’ lower␣ r i g h t ’)

20

p l t . show ()
print (max(X1))

[language=Python]

21

References
[1] David Eager et al. “Investigation into the Trampoline Dynamic Characteristics and Analysis of

Double Bounce Vibrations”. In: Sensors 22.8 (2022). issn: 1424-8220. doi: 10.3390/s22082916.
url: https://www.mdpi.com/1424-8220/22/8/2916.

[2] Manoj Srinivasan, Yang Wang, and Alison Sheets. “People Bouncing on Trampolines: Dramatic
Energy Transfer, a Table-Top Demonstration, Complex Dynamics and a Zero Sum Game”. In:
PLOS ONE 8.11 (Nov. 2013), pp. 1–13. doi: 10.1371/journal.pone.0078645. url: https:
//doi.org/10.1371/journal.pone.0078645.

22

https://doi.org/10.3390/s22082916
https://www.mdpi.com/1424-8220/22/8/2916
https://doi.org/10.1371/journal.pone.0078645
https://doi.org/10.1371/journal.pone.0078645
https://doi.org/10.1371/journal.pone.0078645

	Introduction
	Trampoline model of one player
	Stationary solution

	Simulation of a single player
	Non-resonant fall from certain height
	Resonant jumping

	Model of three players
	Simulation of three players
	Problems and discussion
	Problem with energy
	Discussion and implications

	Summary
	Appendix

