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In this report, we analyse and compare two methods of space-based nuclear waste disposal, disposal
via solar deorbiting and disposal via asteroid belt storage.

Disposal via solar deorbiting was performed by going sufficiently far out into the solar system after
launch, and then performing a Hohmann transfer to fall into the sun. It was found that the further out the second
burn was performed, the smaller the required change in velocity. At 10AU, it took a ∆v of 14106.2ms−1 to
deorbit.

Disposal in the asteroid belt was performed via an initial launch and a Hohmann transfer at the asteroid
belt to enter orbit. This method was found to require a change of velocity of 10977.4ms−1 if the target orbit
was at 2.7AU.

Additionally, a probabilistic model was constructed. This model was used to compute the probability of
a collision in the first 1000 years of orbiting in the asteroid belt. It was found to be 0.0001%, so the odds of
failure after launch were found to be negligible.

These methods were compared with regards to their cost and efficiency. It was found that to dispose of the
2.5×108 kg of nuclear waste on Earth, disposal into the sun would require around 15×105 rocket launches,
while disposal into the asteroid belt would require 4.5×105 rocket launches. Thus, it was found that launches
into the asteroid belt were much more efficient. However, even the most efficient launches would still cost over
$500 trillion to move all of the Earth’s nuclear waste off-planet.
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I INTRODUCTION

The disposal of nuclear waste is a long-
term problem facing humanity. Since nu-
clear waste is composed of radioactive ma-
terials of which little to no useful energy can
be extracted, it is stored in locations where
the radiation will not affect human activity.
However, most methods of storing it on Earth
are prone to failure, and can cause long-term
damage to the environment. And since there
is around 2.5×108 kg of nuclear waste on
Earth, any method to treating it needs to be
robust and scalable. In this paper, an alter-
nate approach was considered. The disposal
of nuclear waste into space was analysed as a
method.

There are two main methods of disposal
of nuclear waste into space. The first is to
send it into the sun, where it will burn up
and stop being a problem. The other is to
place it into the asteroid belt, thereby keep-
ing it away form Earth, and letting it decom-
pose with time. In this paper, these two meth-
ods are compared, to determine which would
be more efficient at getting material off the
Earth.

Currently, most reactors store their spent
fuel rods in pools at first. The reason for this
is because this surrounds the fuel with a lot of
water. Water is particularly effective at isolat-
ing radiation, especially in terms of cost.

Every material has what is called a halv-
ing distance, which is the thickness of that
material that is required to absorb half of all
the radiation passing through it. The halving
distance of lead is 1 cm while the halving dis-
tance of water is around 18 cm. While more
water than lead is required, it is rather easy to
surround something with a lot of water.

Apart from producing a lot of radioac-
tivity, nuclear waste produces a lot of heat.
Due to water’s high specific heat capacity and
low halving distance, water is ideal for both
shielding the radioactive waste and cooling it
as it emits heat.

After the containers are sufficiently cool,
they are moved into dry casks to be stored.
These casks are still dangerous as a breach in
the shielding would allow a lot more radioac-
tivity to escape. For this reason, the accumu-
lation of nuclear waste is becoming a prob-
lem as storing it can cause serious damage to
the surrounding environment. For this rea-
son, sending the waste into space has been
proposed as a solution.

There are many reasons for why space
might not be the best receptacle for nuclear
waste. Space travel is expensive and invest-
ing in energy that does not produce nuclear
waste is cheaper in the long run. Rockets fail
around 6% of the time. If a rocket filled with
nuclear waste and tons of rocket fuel were
to explode, the waste would be sent flying
through the atmosphere, resulting in a catas-
trophic environmental disaster.

Environmental worries aside, if we de-
cided that the only solution to the radioactive
waste problem would be to move it off-planet,
then we can also disregard the rocket failure
rate as it would be a constant that we could do
nothing about. Thus, all we need to consider
is how efficiently could we move all of our
nuclear waste off planet? What trajectories
should we choose for our craft to maximize
this efficiency? Factors we will consider in
choosing this trajectory are long-term safety,
cost, and waste removal rate.

II RADIOACTIVITY

As radioactive materials decay, the rate
at which they lose mass is proportional to the
amount of mass they have left. This results in
a differential equation.

dx
dt

=−kx [1]

Where:
x = amount of particles left
t = time (s)
k = constant of proportionality (s)

Solving this equation allows us to de-
termine the amount of particles at any given
time.

N(t) = N0e- t
τ [2]

Where:
N = amount of particles left at a given time

N0 = initial amount of particles
τ = mean lifetime of a particle

However, in the context of nuclear waste,
which is mostly composed of depleted ura-
nium, the mean lifetime is on the order of bil-
lions of years. This means that nuclear waste
does not disappear quickly, or even diminish
appreciably on the timescales that we are con-
cerned about. As such, waiting for the nu-
clear waste to decay is not an option. It has
to be stored in a location far away, remaining
heavily radioactive that entire time.
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III SPACE TRAVEL

When it comes to space travel, the Vis
Viva equation determines the speed of the
spacecraft given a point in its orbit.

vr,a =

√
GM

(
2
r
− 1

a

)
[3]

Where:
v = the spacecraft’s speed (ms−1)

G = gravitational constant (m3 kg−1 s−2)
M = the Sun’s mass (kg)
r = the spacecraft’s distance from the sun (m)
a = the semi-major axis of the orbit (m)

Here, the value of the gravita-
tional constant, G, was taken to be
6.67408×10−11 m3 kg−1 s−2 and the Sun’s
mass, M, was taken to be 1.98855×1030 kg.

Since efficiency is a concern, we need to
consider trajectories that save on fuel. The
most efficient way to transfer from one or-
bit into another is to use a Hohmann trans-
fer, where the spacecraft only alter’s its orbit
when it is at its apoapsis or periapsis. To ad-
just from one orbit into another, [3] can be
used to calculated the required difference in
velocity.

∆vr,a1,a2 = |v(r, a1)− v(r, a2)| [4]

Where:
∆v = the required change in speed (ms−1)

v = the speed given by [3] (ms−1)
a1 = the current semi-major axis (m)
a2 = the desired semi-major axis (m)

The Tsiolkovsky Rocket Equation was
also used to compute the ratio of the initial
mass of the rocket and the final mass of the
rocket.

∆v = ve ln
m0

m f
[5]

Where:
∆v = the required change in velocity overall (ms−1)
ve = the effective exhaust velocity of the rocket (ms−1)

m0 = the initial mass of a rocket (kg)
m f = the final mass of the rocket (kg)

IV COMPUTATIONS

To execute a sundive efficiently, the
spacecraft needs to Hohmann transfer to an

orbit with a large apoapsis, before transfer-
ring to one with a periapsis so small that it
intersects the Sun. The total ∆v required to
execute this manoeuvre is the sum of the ∆v
required for both manoeuvres.

Thus, if the spacecraft is to execute a
sundive after first flying to a distance of r
from the Sun, the total ∆v can be determined
using [4].

∆vsun,r = ∆vre,ae,
r+ae

2
+∆vr, r+ae

2 , r+R
2

[6]

Where:
r = the distance from which the spacecraft sundives (m)

re = the distance from the Earth to the Sun (m)
ae = the semi-major axis of Earth’s orbit (m)
R = the radius of the sun (m)

The value of re, ae, and R
were taken to be 1.49597871×1011 m,
1.49597871×1011 m, and 6.957×108 m,
respectively.

This allowed the required ∆v to be calcu-
lated as a function of the sundiving distance.
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Fig 1. A plot showing the required ∆v to fly out to a
certain distance and then fly into the Sun from there. The plot
is shown as a function of said distance. The plot has a hori-
zontal asymptote at the escape velocity of the Sun, which is
12337.5 ms−1. The required ∆v becomes increasingly large
for small values of d, and is not shown.

Anything sent into the sun will be imme-
diately vaporized as the temperature of the
sun is on the order of millions of degrees
while even the most resistant materials on
Earth melt at few thousand degrees. Any risk
of solar wind blowing the radioactive mate-
rials back to Earth is mitigated by the fact
that the materials would spread out over an
area as they flew away from the Sun. By
the time they will have reached Earth, the in-
verse square of the distance will have gotten
so small that an immeasurably small portion
will make it back to Earth.
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A more pressing concern is that the con-
tainer makes it back to Earth intact and burns
up in the atmosphere, scattering the radioac-
tive waste into the air and over the whole
planet. From Fig. 1 it is clear that as r in-
creases, ∆v decreases. This means that in-
creasing r to infinity would be optimal. How-
ever, this is equivalent to simply sending
the spacecraft on an escape trajectory. This
would guarantee that, barring some lucky
and extremely improbable slingshot around a
distant black hole, the nuclear waste would
never return. Unfortunately, this would not
qualify as a sundive unless the spacecraft hap-
pens to hit a distant star, the odds of which are
astronomical.

On the other hand, when nuclear waste
is sent into the asteroid belt, it remains intact
in our solar system so the odds of a collision
with Earth must be computed. First, the ∆v
necessary to redirect the waste into an Earth
crossing orbit was considered.

If the waste is on a perfectly circular or-
bit at 2.7 AU, then the required change in ve-
locity can be calculated as a function of the
angle between the waste’s initial path and its
final path as well as the apoapsis of the new
orbit.

∆vcoll,r =
√

(v f ,r cos(φ)− vi)2 +(v f sin(φ))2

[7]

Where:
vi = the initial velocity of v2.7AU,2.7AU (ms−1)
v f = the final velocity of v re+r

2 ,2.7AU (ms−1)

φ = the angle between vi and v f

To calculate φ , we need to take the dif-
ference between the angle of our orbit θ , and
the angle of the new orbit. The angle of the
new orbit can be found as the arctangent of
the slope of the ellipse of the new orbit. For
this, we use the polar equation for an ellipse.

r(θ) =
a(1− e2)

1+ ecos(θ)
[8]

Where:
θ = the angle from periapsis
e = the orbit’s eccentricity

This means that we can use the distance
of the spacecraft from the Sun, 2.7 AU, to
solve for the angle by inverting the formula.

θ = cos-1
(

a(1− e2)− r
re

)
[9]

So to find φ , we need to take the differ-
ence between the spacecraft’s path, which has
a tangential angle of π

2 − θ , and the desired
path, which can be found by differentiating
[8]. We find θ using [9] and this gives us a
formula for φ .

φ =

∣∣∣∣tan-1
(

d [r(θ)sin(θ)]
d [θ cos(θ)]

)
+

π

2
−θ

∣∣∣∣
[10]

All that remains is to find a and e. The
eccentricity is always equal to the ratio of the
distance between the foci to the major-axis.
Thus we can subtract the periapsis, which is
1 AU, from a and divide the result by a to ob-
tain e. Meanwhile, a is just the average of the
periapsis, 1 AU, and the apoapsis, which we
vary.

Thus, the necessary imparted energy to
put our container on an earth-crossing course
was determined as a function of the new or-
bit’s apoapsis.
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Fig 2. A plot showing the required ∆v to send the nu-
clear waste onto an Earth crossing path from a circular orbit
at 2.7 AU. This is expressed as a function of the semi-major
axis of the orbit that the waste is knocked into. The plot has
no values for small values of a as an orbit with a sufficiently
small semi-major axis cannot intersect the asteroid belt.

V DESIGNING THE CONTAINER

When designing the container, there
were two considerations: It had to not dam-
age the equipment, and it had to not harm the
workers placing the container on the rocket.

The latter requirement turned out to be
harsher. 50 mSv is the yearly limit on radia-
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tion that a worker can be exposed to. Mean-
while, radioactive waste exposure within sev-
eral meters is usually fatal. As such, let us
suppose that radioactive waste exposure pro-
vides 5 Sv per day. It then provides 1825 Sv
of radiation in a single year. As a result, the
radiation had to be halved 15 times to become
safe.

The container was to be made of lead,
which has a halving distance of 1cm. As
a result, the container had to have walls at
least 15cm thick. For additional safety pre-
cautions, the walls were extended to be 20cm
thick.

VI ASTEROID BELT STABILITY OF ORBIT

Fig 3. A plot of a potential flight plan and eventual
orbit that nuclear waste could take on if launched into the
asteroid belt to a circular orbit at 2.7 AU. The solid lines are
the orbits of the 5 innermost planets. The dashed lines are
the boundaries of the asteroid belt at 2.2 AU and 3.2 AU.

Now that the necessary ∆v for a colli-
sion that would put Earth at risk had been
computed, the odds of such an event actu-
ally occurring were calculated. To do this, it
was necessary to obtain the orbital informa-
tion of the asteroids that make up the asteroid
belt. This was done with a simple program
that used the curl utility to download entries
from the NASA JPL Small Body Database.
This utility was used to load information on
over 50000 asteroids.

A Python program was written to ana-
lyze the retrieved data. The data for each as-
teroid had the physical parameters extracted.
These were written to a central database,
from which readings could be taken.

0 10000 20000 30000 40000 50000 60000 70000
n'th largest asteroid

108

109

1010

1011

1012

1013

1014

1015

1016

1017

1018

V

Volumes of 64346 largest main-belt asteroids

Fig 4. A plot displaying the largest asteroids in the as-
teroid belt. The largest asteroid is plotted furthest left, while
smaller asteroids are further to the right. The x axis indi-
cates the ordering statistic of the asteroids, while the y axis
indicates the size of the asteroids.

The data was then processed by another
program to determine the masses and vol-
umes of the asteroids. First, the program
computed an approximate volume for each
asteroid based its the diameter. Asteroids
were modeled as spheres, as not enough in-
formation was provided to make an alter-
nate assumption. Subsequently, using the
asteroids with available masses, the average
density of the asteroids was computed to be
3400 kgm−3. This density and the volumes
were used to determine the mass for the re-
maining asteroids.

As a model, the asteroid belt was as-
sumed to span the range from 2.2AU to
3.2AU. In other words, it was assumed, for
the purpose of modeling, that all main-belt
asteroids were between 2.2AU and 3.2AU
away from the sun at all times. The possi-
ble range of velocities was thus computed us-
ing [3], by finding the minimal and maximum
possible velocities for orbits in that range.
These were found to be 15029.9 ms−1 and
21861.7 ms−1, respectively.

The velocities were assumed to be dis-
tributed according to a normal distribution
between the possible extremes of velocity. It
was assumed that 3σ of asteroids had veloc-
ities located in this range, so that nearly all
asteroids lay in the intended range. There are
a number of asteroids that have very eccen-
tric orbits and that do not stay confined to the
range described above. There are very few of
these and their presence does not change the
resulting values, thus, the statistically signif-
icant margin of 3σ was chosen. This is an-
other way of stating that only 1 out of every
1000 main belt asteroids is outside of the in-
dicated range.
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The nuclear waste was assumed to be put
into orbit at a distance of 2.7AU from the sun.
Given this and the above distribution, the av-
erage difference in speed between the waste
and an asteroid in the main belt was com-
puted. This was used to calculate the aver-
age amount of energy that would be imparted
onto the waste in case of a collision.

To compute the probability of a collision
occurring, the following approach was used.
The asteroids were examined in the frame of
reference of the waste in intervals of time ∆t.
In that time interval, the probability of a colli-
sion was equal to the volume newly swept out
by each asteroid relative to the waste, divided
by the total volume of the belt. The volume
swept out by an asteroid was determined to
be equal to its cross-sectional area multiplied
by the distance it traveled in that time, which
was in turn determined to be the speed of the
asteroid relative to the waste, multiplied by
∆t. This volume was calculated for each as-
teroid for which data was known, and then ex-
trapolated for the entire asteroid belt. In unit
time, the probability of a collision was thus
computed to be the above probability divided
by ∆t. And thus, it was computed to be

Pcoll =
∑Akvk

V
[11]

Where:
Pcoll = probability of a collision in unit time

Ak = the cross-sectional area of the kth asteroid (m2)
vk = velocity of the kth asteroid (ms−1)
V = volume of the main-belt (m3)

Thus, the probability of a collision in a
unit time was computed. By modeling col-
lisions as Poisson process, the probability of
a collision in a billion years could be com-
puted. By using an exponential distribution,
it was found that there was a 0.0001% chance
of a collision occurring in the first thousand
years.

By combining the probability of a col-
lision in unit time with the average speed
difference computed above, the expected
amount of energy imparted onto the nuclear
waste in unit time could be computed. It was
computed to be 5.67×10−7 Js−1. From this,
the expected amount of energy imparted over
a billion years could be computed. This then
gave the expected ∆v imparted due to colli-
sions over a billion years. This was found
to be 2115ms−1. As the required ∆v to
send it on an Earth-crossing path was at least

4000ms−1, it was decided that the danger to
Earth from putting the container in the aster-
oid belt was negligible.

VII SUN OPTIMALITY OF ORBIT

Fig 5. A plot of a potential flight plan that nuclear
waste to be deorbited into the sun could take, reaching 10 AU
at its peak. The solid lines are the orbits of the 5 innermost
planets. The dashed lines are the boundaries of the asteroid
belt at 2.2 AU and 3.2 AU.

For the solar disposal, a different issue
was considered: How much ∆v needed to be
generated to land the waste in the sun? The
more ∆v it takes, the more fuel needs to be
packed, which makes it more expensive to
dispose of the waste.

The initial approach was to just burn near
Earth, to alter the orbit of the nuclear waste
into crossing the Sun. However, an alternate
approach was proposed, where an initial burn
was used to put the waste into an orbit head-
ing to a distance d away from the sun, where
a second burn would be performed that would
put the waste on a sun-crossing path.

Using [3], it was found that as d in-
creased, the required ∆v throughout the jour-
ney decreased. Thus, it was found to be more
cost-effective to first build up speed and go
far away from the sun, where a small burn
would allow the waste to just fall into the sun.

This also led to the consideration of an-
other disposal method: Another way of dis-
posing the waste would be to put in on an es-
cape trajectory. This was found to require less
∆v than any solar disposal.
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Fig 6. A plot of a potential flight plan that nuclear
waste to be ejected from the solar system could take. The
solid lines are the orbits of the 5 innermost planets. The
dashed lines are the boundaries of the asteroid belt at 2.2 AU
and 3.2 AU.

VIII COMPARISON

Using the calculations in the earlier sec-
tions, the required ∆v for each method was
computed. The exact ∆v values needed for
some methods are listed below.

Method ∆v Required
Decelerating to fall

directly into the sun
26919.4 ms−1

Decelerating to fall into
the sun after going out

to 10AU

14106.2 ms−1

Accelerating to escape
velocity out of the Solar

System

12337.5 ms−1

Entering orbit in the
Asteroid Belt at 2.7AU

10997.4 ms−1

Entering orbit in the
Asteroid Belt at 2.2AU

9346.67 ms−1

As can be seen in the table, the cheap-
est method, requiring the least ∆v, is dispos-
ing waste into the asteroid belt. This reduced
∆v allows for a decreased amount of fuel re-
quired, allowing for more nuclear waste to be
disposed of in a single rocket.

Using the above ∆v, several rockets were
reviewed for their efficiency in getting the nu-
clear waste to its goals. The Saturn V was
used as the rocket to deliver material. By us-
ing [5], the payload capacity to be delivered a
given location was computed. The maximum
amount of waste a single rocket could deliver

to the sun, after first heading out to 10AU was
found to be 166kg. The maximum amount of
waste a single rocket could deliver to the as-
teroid belt at 2.7AU was found to be 558kg.

The total amount of radioactive waste
on Earth was sourced as 2.5×108 kg. Thus,
disposal into the sun would require around
15×105 rocket launches, while disposal into
the asteroid belt would require 4.5×105

rocket launches. As this number is much
less for the asteroid belt, the asteroid belt was
found to be a significantly cheaper method of
disposal.

However, sending nuclear waste to the
asteroid belt is more dangerous to Earth.
Waste that is discarded into the sun is rapidly
destroyed by solar heat. However, waste
that is stored in the asteroid belt decomposes
slowly. Although the probability of a col-
lision was computed to be 0.0001% in the
thousand years, that does not make it impos-
sible. And in the case of a collision, this
would leave free-floating nuclear waste in the
asteroid belt. However, the more than 1AU
between Earth and the asteroid belt means
that even if there is a collision, the nuclear
waste has low odds of returning to Earth to
cause problems. As such, this method is suf-
ficiently safe that any risks can be ignored.

IX CONCLUSION

Our method restricts the set of possi-
ble solutions to solar disposal and storage in
the asteroid belt. However, there are many
more practical solutions. The waste could be
ejected from the solar system, or it could have
been gradually decelerated into the sun using
a slow but consistent source of deceleration
such as an ion engine.

Additionally, this approach is that the
fuel requirements for the rockets are on the
high side. Calculating the exact fuel require-
ments is not an analytically solvable prob-
lem and would require taking into account
loss of stages and other such mechanisms. To
simplify the calculation, it was assumed that
the Tsiolkovsky rocket equation entirely de-
termined the rocket speed, and that all non-
payload material in the rocket was discarded
at a constant rate. This overestimated the
amount of payload that could be delivered in
a single launch, and underestimated the fuel
needed. However, any comparisons between
the methods still behaved the same way. If
one method would require more fuel under
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one calculation, it would require more un-
der the other. As such, any conclusions as
to the efficiency of either method still held,
even with the assumption to simplify the cal-
culations.

Lastly, the odds of a launch failure still
outweigh the odds of a container coming back
to Earth. Furthermore, the costs associated
with cleaning the environmental disaster that
would result from a failed rocket launch with
nuclear waste on board far outweighs the cost
of moving the waste off-planet. Thus, since
this cost was the same in all approaches in
terms of trajectory, it was disregarded.

This method did not make any approxi-
mations regarding space travel and fully cal-
culated all the required ∆v’s for elliptical or-
bits. This approach fully solved the com-
pletely infeasible problem of moving all of
Earth’s nuclear waste off-planet.

The final verdict on the issue is that it is
far more efficient to move the fuel into the as-
teroid belt, but would still require 4.5×105

Saturn V rockets to complete the task. Since
in 1970, each Saturn V launch would cost
NASA $185 million, then in today’s money,
this would cost over $500 trillion dollars.
This is several times more than the annual
gross domestic product of the entire world,
so the authors of this paper strongly urge the
consideration of a different method.
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import numpy as np

g = 9.81

# Saturn V
Isp = 263
m_s = 2970000
m_w1 = 140000
dv_1 = 7909.3
dv_e = 11185.4

M = m_w1*(np.exp(dv_1/g/Isp))
m_w = lambda dv: M/(np.exp(dv/g/Isp))
m_f = lambda dv: M - m_w(dv)
p = lambda dv: 1.5* m_f(dv)/m_w(dv)
m_str = lambda dv: "{},{},{}".format(

m_w(dv),
m_f(dv),
p(dv))

max_dv = g*Isp*np.log(M/m_s)

print(max_dv)
print(m_str (26919.4+ dv_e))
print(m_str (14106.2+ dv_e))
print(m_str (12337.5+ dv_e))
print(m_str (11924.6))
print(m_str (10977.4+ dv_e))
print(m_str (9346.67+ dv_e))
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import numpy as np
import matplotlib.pyplot as plt
import sys

sunm = 1.98855 E30
sunr = 695700000
G = 6.67408E-11
au = 149597871000
v = lambda a, r: np.sqrt(G*sunm *(2/r-1/a))
dv = lambda d: (

np.abs(v((d+au)/2, au) - v(au , au)) +
np.abs(v((d+sunr)/2, d) - v((d+au)/2, d)))

d = np.linspace (0.1, 20, 10000)
plt.plot(d, dv(d*au))
plt.axis((0, 10, 0, 50000))
plt.title("Necessary $\\ Delta v$ for solar deorbiting")
plt.ylabel("$\\Delta v$ (ms$^{-1}$)")
plt.xlabel("$d$ (AU)")
plt.savefig(sys.argv [1])
plt.clf()

# Plot[Norm@{vf Cos@\[ Theta] - vi, vf Sin@\[Theta ]} /. {vi ->
# v[2.7 au, 2.7 au],
# vf -> v[(au + x)/2,
# 2.7 au], \[Theta] -> ((1/
# 2 Abs [\[Pi] - 2 \[ Theta] -
# 2 ArcTan [(e +
# Cos [\[ Theta ]]) Csc[\[ Theta ]]]] /. {\[ Theta] ->
# ArcCos@ ((a (-d + a (1 - (a - p)^2/a^2)))/(d (a - p))),
# e -> (a - p)/p}) /. {p -> au , d -> 2.7 au ,
# a -> (au + x)/2})}, {x, 2.7 au, 10 au},
# PlotRange -> {0, 40000}]
d = 2.7*au
p = au
a = lambda x: (au + x)/2
e = lambda x: (a(x)-p)/a(x)
th = lambda x: (np.arccos(

(a(x)*a(x) - a(x)*d - (a(x)-p)*(a(x)-p)) /
(d*(a(x)-p))))

dth = lambda x: 0.5 * np.absolute(
np.pi - 2*th(x) - 2 * np.arctan(

(e(x) + np.cos(th(x))) / np.sin(th(x))))
vf = lambda x: v((p+x)/2, d)
vi = v(d, d)
dv2 = lambda x: np.sqrt(

(vf(x)*np.cos(dth(x))-vi) * (vf(x)*np.cos(dth(x))-vi) +
(vf(x)*np.sin(dth(x))) * (vf(x)*np.sin(dth(x))))

x = np.linspace (2.7, 10, 1000)
plt.plot(x, dv2(x*au))
plt.axis((0, 10, 0, 20000))
plt.title("Necessary $\\ Delta v$ to enter an Earth -crossing orbit")
plt.ylabel("$\\Delta v$ (ms$^{-1}$)")
plt.xlabel("$d$ (AU)")
plt.savefig(sys.argv [2])
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#!/usr/bin/python
import math
import re
import sys

mass_patt = re.compile(r’(\d*) ,[^,]*,GM ,([^ ,]*) ,([^,]*)’)
dia_patt = re.compile(r’(\d*) ,[^,]*,diameter ,([^ ,]*) ,([^,]*)’)
# m is in km^3/s^2
# d is in km
# G is in m^3/kg/s^2
G = 6.67408E-11
aggfile = open(sys.argv[1], ’r’)
data = {}
for line in aggfile:

mass_match = mass_patt.search(line)
dia_match = dia_patt.search(line)
if mass_match is not None:

if mass_match.group (1) not in data:
data[mass_match.group (1)] = {}

data[mass_match.group (1)][’GM’] = mass_match.group (2)
if dia_match is not None:

if dia_match.group (1) not in data:
data[dia_match.group (1)] = {}

data[dia_match.group (1)][’diameter ’] = dia_match.group (2)
n = 0
total_rho = 0
for asteroid in data:

if ’GM’ in data[asteroid ]:
data[asteroid ][’mass’] = float(data[asteroid ][’GM’]) / G * 1E9

if ’diameter ’ in data[asteroid ]:
volume = (

1.0/6.0 * math.pi *
float(data[asteroid ][’diameter ’]) *
float(data[asteroid ][’diameter ’]) *
float(data[asteroid ][’diameter ’]))

data[asteroid ][’volume ’] = volume * 1E9
if ’GM’ in data[asteroid ]:

total_rho += float(data[asteroid ][’GM’]) / G / volume
n += 1

rho = total_rho/n
print(’n,m,V,{}’.format(rho))
for asteroid in data:

if ’volume ’ in data[asteroid] and ’mass’ not in data[asteroid ]:
data[asteroid ][’mass’] = rho * data[asteroid ][’volume ’]

if ’volume ’ in data[asteroid] and ’mass’ in data[asteroid ]:
print("{},{},{}".format(

asteroid ,
data[asteroid ][’mass’],
data[asteroid ][’volume ’]))
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import re
import sys

num = re.compile(r’\d+’).search(sys.argv [1]).group (0)
htmlfile = open(sys.argv[1], ’r’)
start_table = False
end_table = False
k = 0
n = -1
attr_pattr = re.compile(r’<font [^ >]* >([^ <]*)<’)
results = []
mb = False
for line in htmlfile:

if k > 0:
k -= 1
results[n]. append(attr_pattr.search(line).group (1))

if start_table and "<tr>" in line:
k = 5
n += 1
results.append ([])

if start_table and "/table" in line:
break

if ’"phys_par ’ in line:
start_table = True

if "Main -belt" in line:
mb = True

if mb:
for result in results:

print "{},{}".format(num , ’,’.join(result))
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#!/usr/bin/python
import matplotlib.pyplot as plt
import numpy as np
import re
import sys

line_patt = re.compile(r’([0 -9.e+]*) ,([0-9.e+]*) ,([0-9.e+]*)’)
mvfile = open(sys.argv[1], ’r’)
masses = []
volumes = []
for line in mvfile:

line_match = line_patt.match(line)
if line_match is not None:

masses.append(float(line_match.group (2)))
volumes.append(float(line_match.group (3)))

masses.sort(reverse=True)
plt.semilogy(np.arange(len(masses)), masses)
plt.title("Masses of " + str(len(masses)) + " heaviest main -belt

asteroids")
plt.xlabel("$n$’th heaviest asteroid")
plt.ylabel("$m$")
plt.savefig("graphs/assmass.pdf")
plt.clf()
volumes.sort(reverse=True)
plt.semilogy(np.arange(len(volumes)), volumes)
plt.title("Volumes of " + str(len(volumes)) + " largest main -belt

asteroids")
plt.xlabel("$n$’th largest asteroid")
plt.ylabel("$V$")
plt.savefig("graphs/assvol.pdf")
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import numpy as np
import scipy.stats as sps
import sys

mvfile = sys.argv [1]

n, m, V = np.loadtxt(
mvfile ,
unpack=True ,
skiprows=1,
delimiter=’,’,
)

A = np.power(V / np.pi * 0.75, 2.0/3.0) * np.pi

au = 149597871000
r_max = 3.2*au
r_min = 2.2*au

V = np.pi * np.pi * (r_max -r_min)*(r_max -r_min)*(r_max+r_min) / 4

v_max = 21861.7
v = 18126.7
v_min = 16650.5

s = (v_max -v_min)/6
m = (v_min+v_max)/2

y = (v-m)/s

Z1 = sps.norm.cdf(y)
Z2 = np.exp(-y*y/2)
D = 2*(v-m)*Z1 + 2*s/np.sqrt (2*np.pi)*Z2 - (v-m)

N = 10000000

P_coll = np.sum(A)*D/V*N/len(n)
print("Collision Probability: {}".format(P_coll))
print("Average collision energy: {}".format(np.mean(m*D*D/2)))
print("Average E per unit time: {}".format(np.sum((A*D/V)*N/len(n)*(m*D

*D/2))))
P_s = np.sum((A*D/V)*N/len(n)*(m*D*D/2))
# Average amount of energy impacted per second
print("Average E in 1Ky: {}".format(P_s * 60 * 60 * 24 * 365 * 1E3))
print("Average DV in 1Ky: {}".format(

np.sqrt(P_s * 60 * 60 * 24 * 365 * 1E3 * 2 / 8000)))
print("Probability of a collision in 1Ky: {}".format(

1-np.exp(-P_coll *60*60*24*365*1 E3)))
print("Average E in 1 billion y: {}".format(P_s * 60 * 60 * 24 * 365 *

1E9))
print("Average DV in 1 billion y: {}".format(

np.sqrt(P_s * 60 * 60 * 24 * 365 * 1E9 * 2 / 8000)))
print("Probability of a collision in 1by: {}".format(

1-np.exp(-P_coll *60*60*24*365*1 E9)))
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curl ’http ://ssd.jpl.nasa.gov/sbdb.cgi ’ -H ’Cookie: __utma
=259910805.724030513.1412187546.1416961501.1419394701.7; __utmc
=259910805; fsr.s=%7B%22v2%22%3A-2%2C%22v1%22%3 A1%2C%22 rid %22%3A%22
def5438 -92974517 -7ace -2984 -57104%22%2C%22ru %22%3A%22 https %3A%2F%2
Fwww.facebook.com%2F%22%2C%22r%22%3A%22www.facebook.com %22%2C%22st
%22%3A%22%22%2C%22cp%22%3A%7B%22 delivery_src %22%3A%22 none %22%2C%22
beta %22%3A%22N%22%7D%2C%22to%22%3 A10%2C%22c%22%3A%22 http%3A%2F%2
Fwww.nasa.gov%2Fimage -feature %2Fthe -rich -color -variations -of -pluto
%22%2C%22pv %22%3 A1%2C%22lc %22%3A%7B%22d4%22%3A%7B%22v%22%3 A1%2C%22s
%22%3 Atrue%7D%7D%2C%22cd %22%3A4%2C%22sd%22%3 A4%2C%22f%22%3
A1443190985889 %7D’ -H ’Origin: http :// ssd.jpl.nasa.gov ’ -H ’Accept -
Encoding: gzip , deflate ’ -H ’Accept -Language: en -US,en;q=0.8’ -H ’
Upgrade -Insecure -Requests: 1’ -H ’User -Agent: Mozilla /5.0 (
Macintosh; Intel Mac OS X 10_11_5) AppleWebKit /537.36 (KHTML , like
Gecko) Chrome /54.0.2840.71 Safari /537.36 ’ -H ’Content -Type:
multipart/form -data; boundary=----
WebKitFormBoundary1WHqaQzVTeiUU6Yy ’ -H ’Accept: text/html ,
application/xhtml+xml ,application/xml;q=0.9, image/webp ,*/*;q=0.8’ -
H ’Cache -Control: max -age=0’ -H ’Referer: http :// ssd.jpl.nasa.gov/
sbdb.cgi ’ -H ’Connection: keep -alive ’ --data -binary $’------
WebKitFormBoundary1WHqaQzVTeiUU6Yy\r\nContent -Disposition: form -
data; name="sstr"\r\n\r\n’$1$ ’\r\n------
WebKitFormBoundary1WHqaQzVTeiUU6Yy --\r\n’ --compressed
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for i in ‘seq 1 $1‘
do

if [ -f data/raw/$i.html ]
then

python code/param_scrape.py data/raw/$i.html >> $2
fi

done


